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Single-species population models often include density-dependence phenomenologically in order to
approximate higher order mechanisms. Here we consider the common scenario in which density-
dependence acts via depletion of a renewed resource. When the response of the resource is very quick
relative to that of the consumer, the consumer dynamics can be captured by a single-species, density-
dependent model. Time scale separation is used to show analytically how the shape of the density-
dependent relationship depends on the type of resource and the form of the functional response.
Resource types of abiotic, biotic, and biotic with migration are considered, in combination with linear and
saturating functional responses. In some cases, we derive familiar forms of single-species models, adding
to the justification for their use. In other scenarios novel forms of density-dependence are derived, for
example an abiotic resource and a saturating functional response can result in a nonlinear density-
dependent relationship in the associated single-species model of the consumer. In this case, the per
capita relationship has both concave-up and concave-down sections.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Single-species models have a long tradition in ecology. They
have been used to make predictions about empirical populations,
informing management decisions such as those concerning sus-
tainable harvesting (Guthery and Shaw, 2012). Additionally, they
serve as fundamental components of more complex models, such
as food web models or models of species interactions. Single-
species models are, however, simplifications of a complex reality.
In the field, the species being modeled is just one member of a
large, interacting ecosystem, which consists of many other species
and nutrients that are not explicitly referenced in the model. Even
in a laboratory setting, where the researcher can limit the number
of species and types of interactions, a single-species model does
not explicitly take into account the dynamics of the nutrients
which the organism must consume in order to survive. Instead,
single-species models, such as the logistic model, attempt to
capture direct and indirect interactions with other species by
incorporating their effects into an abstract concept such as a
carrying capacity.

A diverse set of single-species models, both continuous-time
and discrete-time models have been proposed (Brannstrom and
Sumpter, 2005; Sakanoue, 2007; Wu et al., 2009). Arguably, the
most widely used model is the Verhulst–Pearl logistic (Verhulst,
1838; Pearl and Reed, 1920), which assumes a linear decrease in
the per capita growth rate with increasing density. Various justi-
fications for the logistic model have been made (Thornley et al.,
2007); however, they are not without controversy (Ginzburg,
1992; Berryman, 1992). Typical textbook derivations simply posit
a linear relationship between per capita growth rate and density as
an approximation (Begon et al., 2007; Gotelli, 2008). In general,
phenomenological single-species models lack mechanistic expla-
nations for their functional form. However, there have been
periodic efforts to derive single-species models on first principles.
A more explicit spatial derivation of the logistic equation consi-
ders individuals as competing, overlapping circles on a surface
(Royama, 1992), although the derivation is vague as to the identity
and dynamics of that for which individuals are competing. The
discrete-time Ricker model has found mechanistic justification
through several derivations, including one in which adult fish
cannibalize juveniles (Gurney and Nisbet, 1998) and another in
which it approximates a stochastic individual-based model for a
mite (Sumpter and Broomhead, 2001). A series of discrete-time
models have been derived based on a spatially implicit framework
of safe sites (Brännström and Sumpter, 2005). Additionally, several
well-known discrete-time models have been derived through the
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time scale analysis of underlying within year consumer-resource
dynamics (Geritz and Kisdi, 2004). The continuous-time within
year dynamics provide a mechanistic explanation for the cyclic
and chaotic dynamics that can be expressed in single-species
discrete-time models.

Density-dependence is a central feature of many single-species
models, and indeed even an increasingly important feature of
age-structured models (Neubert and Caswell, 2000). Nonetheless,
there is a large and sometimes inconsistent lexicon associated
with the concept of density-dependence (Herrando-Perez et al.,
2012). Here we define density-dependence as the effects of
population density upon population per capita growth rate.
Density-dependence can be described by the shape of a per capita
growth rate (PCGR) curve which is a plot of population per capita
growth rate, dN=ðN dtÞ, versus population density, N, a relationship
that can be examined empirically and modeled mathematically.
For example, the PCGR curve of the logistic model is linear. Since
per capita growth rate can be thought of as a function of density,
dN=ðN dtÞ ¼ f ðNÞ, a single-species PCGR curve implies the single-
species model, dN=dt ¼ f ðNÞN. Density-dependence can arise for
various reasons, including changes in the availability of nesting
sites, nutrients, or suitable mates with density. As in Abrams
(2009a), we limit the consideration of density-dependence to that
due to the availability of consumable, renewable resources, such as
prey items or nutrients.

In a single-species, density-dependent model a real-world
ecosystem, which may consist of n interacting species, has been
reduced from an n-dimensional system to a one-dimensional
equation. In essence, a reduction in system dimensionality is
occurring. Schaffer (1981) refers to the reduction of a real-world
ecosystem with n interacting species to a mathematical model
with mon interacting species as “ecological abstraction”. In this
sense, single-species models are the limiting case of ecological
abstraction. This perspective raises a few questions: (1) What
methods can be used to abstract a single-species model from a
multi-dimensional system? (2) What functional forms of single-
species models are constructed from these methods of abstrac-
tion? (3) Are there ecological situations in which these methods
are better at capturing the actual dynamics of the organism of
study? We consider these questions in the framework of contin-
uous-time, deterministic, unstructured models; in other words
those lacking age-structure or size-structure. Such models are a
natural first consideration, as methods of incorporating density-
dependence in single-species models often become the basis of
how density-dependence is incorporated into more complex
models.

Ideas about how a consumer-resource system can be translated
into consumer single-species dynamics have been explored by
making substitutions determined from equilibrium relationships
(Mac Arthur, 1970; Schoener, 1973). While these approaches were
not discussed as time scale separation problems, for the best
accuracy they inherently assume that the resource dynamics take
place on a much shorter time scale than the consumer dynamics
(Mac Arthur, 1970). Schaffer (1981) develops a general method of
abstraction that determines growth equations for mon species
from a known n-dimensional ecosystem. The abstracted growth
equations most accurately describe the growth seen in the
full system when the dynamics of the omitted species occur on
relatively fast time scales (Schaffer, 1981) and the species of focus
are near their equilibrium values. Using Schaffer's method, a
single-species model abstracted from an n-dimensional ecosystem
is always of logistic form. Despite the wide use of the logistic
model, the existence of several data sets with non-logistic beha-
vior has spurred the development of various alternative single-
species models (Wu et al., 2009; Tsoularis and Wallace, 2002).
While Schaffer was able to make many insightful remarks on the

topic of ecological abstraction, his method is not flexible enough
to capture the nonlinear PCGR relationships observed in some
empirical systems (for example Forrester et al., 2011). However,
not all past single-species model abstraction methods have
resulted in the logistic model; in Thieme (2003) a single-species
model with a convex PCGR curve is abstracted from a consumer-
resource system via time scale separation. Furthermore, recent
work by Abrams (2009a,b) suggests a method of abstraction that
can produce nonlinear PCGR curves.

Abrams' approach differs from those mentioned above. Instead
of using the equilibrium values of an original two-dimensional
consumer-resource system, he uses the equilibrium values that
result from applying a constant per capita harvest rate to the
consumer. By relating the harvest rate to the consumer growth
rate, Abrams abstracts a single-species density-dependence curve.
Since Abrams' density-dependence curves are displayed in a
nonstandard format, which has hindered their interpretation, it
is worthwhile to discuss the implications of Abrams' work and the
format in which it is presented. Abrams (2009a) shows there are
types of consumer-resource systems that lead to the consumer
having nonlinear, i.e. non-logistic, density-dependence curves.
Furthermore, he demonstrates that there are cases where the
nonlinear density-dependence curves of the consumer cannot
even be accurately described by the curves of the theta-logistic
model (Gilpin and Ayala, 1973). While these results are clear
from Abrams' figures, unfortunately, the curves Abrams finds,
N¼ gðdN=ðN dtÞÞ, are the inverse functions of the PCGR curves
described above, dN=ðN dtÞ ¼ f ðNÞ. In some cases g is not invertible.
Moreover, it is unclear under which ecological situations the
method Abrams applies will be the most accurate in describing
actual per capita growth rate curves.

As in Thieme (2003), we formally consider the abstraction of a
single-species model from a consumer-resource system as a
separation of time scales problem. Time scale separation is a tool
used in many adaptive dynamics approaches (Abrams, 2001, 2005;
Dieckmann and Law, 1996; Geritz et al., 1996), which typically
assume that ecological processes occur on a much faster time scale
than evolutionary changes. For a few consumer-resource systems,
we explicitly identify a small parameter ε, which justifies a sepa-
ration of time scales approach under the assumption that resource
dynamics occur rapidly compared with those of the consumer.
The time scale problems considered here can be addressed more
rigorously using the technique of matched asymptotics (Edelstein-
Keshet, 2005; Logan, 2006; Lakin and Van Den Driessche, 1977)
from singular perturbation theory (O'Malley, 1991; Schaffer, 1981;
Thieme, 2003), which has also been used in describing Michaelis–
Menten kinetics (Heineken et al., 1967). As desired,
the solutions from matched asymptotics converge to the equa-
tions presented here as ε-0. By using time scale separation
to abstract single-species models from consumer-resource sys-
tems, we ground the abstraction methods of Abrams in a more
formal mathematical approach. In doing so, the ecological situa-
tions under which Abrams' approach best represents consumer
dynamics can be described. Furthermore, we calculate explicit
functional forms of single-species models abstracted from a few
particular consumer-resource systems. The models, including their
density-dependence curves and their relation to previous litera-
ture, are discussed.

2. Models and results

2.1. General approach

A consumer with population density, N, interacting with a
single resource population of density, R, is represented by the
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differential equations model

dN
dt

¼ bf ðRÞN�mN

dR
dt

¼ gðRÞ�f ðRÞN: ð1Þ

Consumer-resource systems of this form are considered by Abrams
(2009a). The function g represents the rate of change of the
resource density in the absence of the consumer, and the function
f is the consumer's functional response. The per capita growth rate
(PCGR) of the consumer, at any point in time, is given by the
difference between the per capita gain in population size due
to resource consumption and the per capita loss of population
size due to natural causes, m. Consumer growth is always assumed
linearly dependent upon resource uptake (linear numerical res-
ponse), where b is a conversion efficiency parameter.

We examine three types of resource and two types of consumer
functional responses (Table 1) in combination to form six parti-
cular examples of consumer-resource models of form (1). In the
absence of the consumer, each resource type undergoes different
dynamics. The abiotic resource increases at a constant rate and
naturally declines at a rate proportional to its concentration, as
in a chemostat. The biotic resource is assumed to have logistic
dynamics with intrinsic growth rate r and equilibrium density K.
Any factor contributing to the logistic dynamics of the resource
behave independently of predation by the consumer. The biotic
resource with migration exhibits logistic dynamics, however, the
growth of the population is supplemented by a constant immigra-
tion rate into the population. Emigration is also possible and
occurs at a rate proportional to the density of resource already
present.

For both functional responses the consumer encounters
resources with attack rate c. In situations where the consumer
exhibits a linear functional response to the resource, an average
consumer depletes cR units of resource per unit time. In situations
where the consumer exhibits a saturating, Holling Type II func-
tional response, a non-negligible handling time h accounts for the
time it takes to secure and process food before resource encoun-
ters can again occur.

Each model will be non-dimensionalized in a way that focuses
on consumer dynamics. Assuming time to death is exponentially
distributed, 1/m represents the consumer's average lifespan, and
therefore, is a good choice for a time scale. For the purposes of
looking at a consumer-resource system with a stable steady-state
equilibrium, how large or small a population is relative to its
equilibrium is of interest. Hence, the coexistence equilibrium
values of R⋆ and N⋆ will serve as good reference values for
the resource and consumer densities, respectively. Using these
reference values, (1) is transformed into a non-dimensionalized
consumer-resource system of the form

d ~N
d~t

¼ Gð ~R; ~NÞ;

ε
d ~R
d~t

¼ Fð ~R; ~NÞ;

where ~t , ~N , and ~R represent the scaled values for time, consumer
density, and resource density, respectively.

Assuming the response of the resource is fast compared to that
of the consumer, i.e. ε51, a first order approximation is found for
the consumer via time scale separation. By separating the time
scales, the problem can be thought of as two pieces. The fast
process involves the resource rapidly adjusting to consumer
density while the consumer population remains constant up to
first order. This results in the system quickly reaching quasi-
equilibrium. During the slow process the resource remains
near its quasi-equilibrium value as the consumer density evolves
towards its equilibrium density. It is only the slow process of
consumer growth that is of interest, and setting ε¼ 0 finds a first
order approximation for this growth. Using Fð ~R; ~NÞ ¼ 0, ~R can be
solved for in terms of ~N and substituted into the consumer
equation to obtain a single-species model. The smaller the value
of ε, the better the order one approximation will be to the
consumer's dynamics as projected by the consumer-resource
system. For large values of ε, the consumer-resource system can
exhibit non-monotonic behavior, such as damped oscillations,
which cannot be captured by a single-species model of the form
considered (see Fig. 1).

2.2. Biotic resource and linear functional response

The order one consumer results of the biotic resource and
linear functional response model are logistic (Schaffer, 1981).
Before moving on to novel results, we use this section to illustrate
the described process and expand upon previous work by discuss-
ing model robustness in reference to an explicit small parameter ε.
Here, the interactions and growth of a biotic resource and a
consumer with a linear functional response is given by

dN
dt

¼ bcRN�mN;

dR
dt

¼ rR 1�R
K

� �
�cRN; ð2Þ

where R(t) and N(t) are the resource and consumer densities at
time t, respectively.

As discussed in Section 2.1 the time, resource, and consumer
reference values are 1/m, R⋆ ¼m=ðbcÞ, and N⋆ ¼ ðr=cÞð1�m=ðbcKÞÞ,
respectively. With these values the non-dimensionalized version
of (2) is given by the consumer-resource system

d ~N
d~t

¼ ð ~R�1Þ ~N ;

ε
d ~R
d~t

¼ ~Rð1�β ~RÞ�ð1�βÞ ~R ~N ;

where

ε¼m
r
; ð3Þ

and

β¼ m
bcK

: ð4Þ

Table 1
Model functions for resource growth and consumer functional response.

Resource type g(R) Functional response f ðRÞ

Abiotic i�eR Linear cR
Biotic

rR 1�R
K

� �
BioticþMigration

rR 1�R
K

� �
þ i�eR

Saturating cR
1þchR
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An ecological interpretation of ε51 reveals a more precise
definition of when the resource response is “fast” compared to
that of the consumer. Eq. (3) can be written as

ε¼ 1=r
1=m

¼ τRB
τN

; ð5Þ

where τN may be thought of as the expected consumer lifespan
and τRB is the time it takes for the resource to increase by one unit
when rare and consumer-free, henceforth referred to as the
resource's “intrinsic growth time”. For ε51, it must be that
τRB5τN. If the resource's intrinsic growth time is short compared
with the lifespan of the consumer, then ε will be a small
parameter. Equivalently, if the intrinsic per capita growth rate of
the resource is very large relative to the consumer's per capita
death rate, then resource dynamics will be occurring on a fast time
scale. Under these circumstances, we set ε¼ 0 and solve for ~R in
terms of ~N . Substituting the result for ~R into the consumer
equation, the first order approximation of the consumer's
dynamics is given by the function ~Nð~t Þ that solves the initial value
problem (IVP)

d ~N
d~t

¼ ρ ~Nð1� ~NÞ; ~Nð0Þ ¼ ~N0o
1

1�β; ð6Þ

where

ρ¼ 1�β
β

; 0oβo1:

In other words, the dynamics of the consumer are represented by
the solution to the logistic equation with intrinsic growth rate ρ
and an equilibrium density of one. Since the coexistence steady-
state equilibrium of the system is stable for βo1, only the values
0oβo1 are considered. Notice from (4) that

β¼m=bc
K

¼ R⋆

R⋆
abs

; ð7Þ

where R⋆
abs is the equilibrium population density of the unscaled

resource population in the absence of the consumer. Hence, for the
consumer resource-system to be stable the resource equilibrium in
the presence of the consumer must be smaller than the equili-
brium in the absence of the consumer. Intuitively, it makes sense
that consumption of a population would result in a lower equili-
brium population density. When β is close to zero, ρ is very large.

As β approaches one, ρ approaches zero. Hence, the scaled
intrinsic growth rate, ρ¼ ðR⋆

abs�R⋆Þ=R⋆, may take on any positive
value.

If the presence of the consumer alters the resource density
significantly, then β is small and the consumer density grows
rapidly towards equilibrium. This will likely be the case if the
consumer's attack rate is high, the consumer's lifespan is long,
and the resource population is only weakly self-limiting. While we
have assumed that the consumer's lifespan is long relative to the
resource's intrinsic growth time, this does not mean that we
expect β to always be small. If the consumer's attack rate or the
resource's carrying capacity are of the same magnitude as the
consumer's per capita death rate, then the consumer will have less
of an effect upon the resource density and β will not be small.
If the addition of a consumer population has little effect upon
the resource density, then β� 1 and the consumer will have a low
growth rate (ρ� 0). In any case, the growth is predicted to be
approximately logistic. Moreover, the smaller the value of ε, or the
smaller the resource's intrinsic growth time τRB is compared with
the consumer's lifespan τN, the closer the actual dynamics of the
consumer will be to the logistic dynamics predicted by (6).
However, how small ε51 needs to be for the logistic model to
be a good approximation differs by case, as it is dependent on the
parameter β.

When β is small, slight changes in the consumer's density,
require large changes in the resource density for the system to
remain at quasi-equilibrium. If β is small enough, the consumer's
growth rate ρ will be so large that changes in consumer density
will occur too rapidly for the resource to completely maintain
quasi-equilibrium. Damped oscillations converging to the coex-
istence equilibrium then result. Hence, the smaller the value of β,
the more likely damped oscillations will occur and the smaller ε
must be for the dynamics of the consumer-resource system to be
non-oscillatory. In other words, when the consumer's attack rate is
high or the resource's carrying capacity is large, the resource's
intrinsic growth rate must be extremely large for the consumer's
actual dynamics to be monotonic as predicted by the logistic
model.

While the logistic model cannot exhibit damped oscilla-
tions, it remains a good approximation whenever the damped
oscillations are small and irrelevant to the use of the model.
Stability analysis shows that damped oscillations will occur

Fig. 1. (a) Phase plot for the scaled biotic resource and linear consumer functional response model with β¼ 0:55, ~N0 ¼ 0:1, and ~R0 ¼ 20=11. Black dashed lines represent the
resource and consumer nullclines. At the smallest values of ε the resource quickly adjusts to and remains at quasi-equilibrium as assumed for accuracy of model (6).
(b) Consumer per capita growth rate curves corresponding with the trajectories seen in (a). The dashed line is the logistic PCGR curve predicted by model (6), and is very
accurate for the smallest value of ε. When damped oscillations occur, there are consumer densities where the PCGR curve takes on multiple values. These values are
determined by the resource density at the time and are highly sensitive to initial conditions. Note, it is not always the case that the PCGR curves will be a simple
transformation of the phase plot; the addition of handling time, for example, will further distort this transformation.
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whenever ε4β2
=ð4ð1�βÞÞ. When ε is very small but just

slightly larger than the right hand side of this inequality, then
the magnitude of the oscillations are small and, for small β,
the dynamics converge to equilibrium quickly, often within a
few generations. The magnitude of these damped oscillations
also depends on the initial conditions of the system. For a
system just slightly perturbed from its equilibrium, the
oscillations are smaller and die down more rapidly. For a
system where damped oscillations are expected, if ε is quite a
bit larger than the right hand side of the given inequality or at
least one of the densities starts far from equilibrium, then
the damped oscillations will be greater in magnitude and take
longer to approach equilibrium. These cases and any others
where damped oscillations cannot be ignored are examples in
which a time-invariant single-species model cannot capture
the dynamics of the consumer-resource system.

As β increases in value towards one, the system becomes more
stable and no damped oscillations are expected for small ε.
Therefore, compared to when the consumer has a large effect
on resource density, when the consumer only slightly alters
the resource density the logistic model is expected to be a good
approximation for higher ratios of the resource's intrinsic growth
time, τRB, to the consumer's lifespan, τN. The smaller the con-
sumer's attack rate and the resource's carrying capacity, the wider
the range of ε51 for which model (6) makes good predictions of
the actual consumer dynamics. For large values of ε, no matter
what the value of 0oβo1, the consumer's system dynamics will
differ from those predicted by logistic model (6). In some of these
cases, depending on how the predictions will be used, it is possible
that a logistic model may still be an appropriate estimate of
dynamics. However, even in these few cases, it is likely that
the intrinsic growth rate parameter that best fits the actual
consumer dynamics will differ from the intrinsic growth rate ρ
predicted in model (6). In general, the robustness of model (6) to
changes in small ε are strongly linked with the degree of stability
of the given consumer-resource system. As the stability of the
consumer-resource system's coexistence steady-state weakens,
the robustness of the single-species model decreases.

2.3. Abiotic resource and linear functional response

The same type of analysis can be performed on the following
model, which represents a consumer that relies upon an abiotic
resource:

dN
dt

¼ bcRN�mN;

dR
dt

¼ i�eR�cRN: ð8Þ

The equation governing consumer density, N, has not changed; the
only difference between (8) and (2) occurs in g, the rate of change
of the resource density in the absence of the consumer, which is
now non-logistic. The non-dimensionalized model is

d ~N
d~t

¼ ð ~R�1Þ ~N ;

εβ
d ~R
d~t

¼ 1�β ~R�ð1�βÞ ~R ~N ; ð9Þ

where

ε¼m
e

ð10Þ

and

β¼ em
bci

: ð11Þ

Both parameters, ε and β, have ecological interpretations
related to those explained in Section 2.2 with a biotic resource.
The meaning of β has not changed; it is still the ratio of
the resource equilibrium value in the case of coexistence to the
resource equilibrium value in the absence of the consumer

β¼m=ðbcÞ
i=e

¼ R⋆

R⋆
abs

: ð12Þ

Similar to (3), ε compares a consumer rate to a resource rate.
Here, the natural death rate of the consumer is compared with the
natural decline rate of the abiotic resource. These values can also
be thought of as times

ε¼ 1=e
1=m

¼ τRA
τN

: ð13Þ

In contrast to (5), τRA in the abiotic case measures the expected
retention time of one resource density unit within the resource
pool when the consumer is absent.

For ε51, it must be that τRA5τN, or, the average lifespan of
the consumer is much larger than the retention time of the
resource within the resource pool when consumer-free. In other
words, the smaller the per capita death rate of the consumer, m,
and the larger the per capita decline rate of the resource, e, the
smaller ε will be. Assuming ε is a small parameter, the consumer's
order one dynamics are given by the solution to the IVP

d ~N
d~t

¼ ρ ~N
1� ~N

1þρ ~N

 !
; ~Nð0Þ ¼ ~N0; ð14Þ

where

ρ¼ 1�β
β

¼ R⋆
abs�R⋆

R⋆ ; 0oβo1:

The inequality 0oβo1 restricts the system to parameter values
for which the coexistence steady-state equilibrium of (9) is stable.

Eq. (14) is a scaled version of a single-species density-depen-
dent model that was introduced by Smith (1963), but see also
Birch (1999). Smith derived the model by starting from the logistic
equation and taking into account the food consumption rate not
currently being utilized by the consumer population. We derived
the model by starting with a consumer-resource system and
taking into account the two different time scales of the resource
and the consumer. Our results are equivalent to a previous time
scale analysis of the same system with different density scales
(Thieme, 2003). This model is often cited as an alternative to
the logistic model (Wu et al., 2009; Tsoularis and Wallace,
2002), and its use in the literature will be discussed in Section 3.
Unfortunately, (14) does not have an algebraic solution in terms of
~N as a function of ~t , and dynamics must be calculated numerically.
Fig. 2 shows the per capita growth rate (PCGR) curves for different
values of ρ and their associated consumer dynamics.

When ρ is large (β small), the consumer's growth rate when
rare is very large. Moreover, the deviation of the consumer's per
capita growth rate from a logistic curve is also large. Thus, if the
resource value of the coexistence equilibrium is much smaller than
the resource consumer-absent equilibrium value, then the con-
sumer is expected to grow quickly when rare and have dynamics
that deviate from a logistic curve. In other words, if on average the
consumer harvests a large quantity of abiotic resource within
its lifetime (drastically changing the resource's density), then
we expect the consumer population to grow rapidly in a non-
logistic way.

On the other hand, as ρ decreases to zero (β-1) the con-
sumer's PCGR curve becomes more and more logistic looking
(linear), albeit with a very small scaled growth rate. Consequently,
if the resource coexistence equilibrium deviates very little from
the resource equilibrium in the absence of the consumer, then the
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consumer will grow slowly when rare, taking more time to reach
its coexistence equilibrium value. In this case the consumer has
very little affect upon the resource population density and its
dynamics could be predicted, within reasonable accuracy, by a
logistic curve with a small intrinsic growth rate.

As in Section 2.2, the robustness of model (14) to changes in
ε51 is directly tied to the stability of the system. Unlike the case
with a biotic resource, analysis of the Jacobian matrix after
linearizing around the coexistence steady-state shows that
damped oscillations are not expected for εo1 when the resource
is abiotic. Observations of the full nonlinear system reveal that a
consumer population may grow rapidly, overshooting its equili-
brium density, and then monotonically decrease to equilibrium.
Single-species model (14) cannot capture such dynamics; how-
ever, this behavior is highly unlikely or small in magnitude for
reasonable parameter values and initial conditions. Hence, we can
expect a much wider range of acceptable values of small ε, than
those seen in Section 2.2. In some cases, model (14) is even a good
approximation for ε values close to one.

2.4. Biotic resource, migration, and linear functional response

In an open system, a biotic resource will not only grow but will
also have the opportunity to migrate into or out of the observed
area of study. The system

dN
dt

¼ bcRN�mN;

dR
dt

¼ rR 1�R
K

� �
þ i�eR�cRN; ð15Þ

models this type of resource when it is being predated upon by a
consumer with a linear functional response. Utilizing the reference
scaling values as described in Section 2.1, the equivalent non-
dimensionalized system is

d ~N
d~t

¼ ð ~R�1Þ ~N ;

ε
d ~R
d~t

¼ α�δ ~Rþ ~Rð1�β ~RÞ�ðα�δþ1�βÞ ~R ~N ;

where

ε¼m
r
; ð16Þ

α¼ bci
mr

; ð17Þ

δ¼ e
r
; ð18Þ

and

β¼ m
bcK

: ð19Þ

Eqs. (16) and (19) are the same as (3) and (4) from Section 2.2
where a non-migratory biotic resource and a consumer with a
linear functional response were considered. The interpretations
of ε and β must only be altered slightly from those presented in
Section 2.2 by noting that r and R⋆

abs are the resource intrinsic
growth rate and resource equilibrium density, respectively, given
that the consumer is absent and there is no migration. Two new
parameter values α and δ have been added to take into account
the level of immigration and emigration, respectively.

Eq. (18) is the ratio of the resource's per capita emigration rate
to its per capita intrinsic growth rate. When ε is small, it is very
likely that r is large; therefore, δ is only an important parameter if
the emigration rate of the resource is comparable to r. This is to be
expected, since if there is only a small amount of emigration it will
have little effect on how the population grows.

Since the immigration rate is constant, it can only be compared
with the intrinsic per capita growth rate at a specific resource
density level. Eq. (17) uses the system's coexistence equilibrium
resource density to translate the constant immigration rate into a
per capita immigration rate. This resource “per capita immigration
rate”, ðbciÞ=m, is compared with the biotic resource's intrinsic
per capita growth rate. The larger the value of α, the more
likely immigration will alter the consumer's dynamics from those
expected for model (2).

Given that ε is a small parameter, or m5r the order one
consumer dynamics are described by a novel single-species model

d ~N
d~t

¼ 1
2

ðA�1Þ ~N�ðAþBÞ ~N2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAþ1Þ ~N�ðAþBÞ ~N2� �2

þ4B ~N
2

r !
;

 

ð20Þ

~Nð0Þ ¼ ~N0;

where

A¼ 1�δ�β
β

; B¼ α
β
; and �BoA:

While ecologically B40, it is possible for A to be negative. In the
cases were A is negative the consumer's order one PCGR curves
look like Fig. 2 from the abiotic resource and linear functional
consumer response. In particular, when Ao�1, then roe. In other
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words, emigration of resource out of the observed area is so high
that the natural births from biotic growth cannot compensate
for it. Instead, the population is being sustained by immigration
of the resource into the area of study. The area of study can
be considered a sink patch for the resource, and the resource
dynamics will be dominated by migration. Since the form of
migration we have considered is the same form as that for an
abiotic resource, it is not surprising that the resulting PCGR curves
resemble Fig. 2 in this case.

When A40, the biotic growth rate of the population can
overcome emigration, at least at small densities, and the popula-
tion is no longer a sink. In this case the consumer's PCGR curves
range from linear to concave up in a different manner than that
seen in Fig. 2. Fig. 3 highlights this difference. For fixed A an
increase in B can be thought of as an increase in the level of
immigration, i. At small values of B the biotic growth processes
dominate the resource dynamics and the consumer's PCGR curve
is essentially linear for densities below the equilibrium. As B
increases, immigration becomes a more dominant process and
the consumer's PCGR curves become more concave up, represent-
ing early-acting density-dependence.

As in the previous cases, the robustness of model (20) is linked
with the stability of the system and ranges between the cases
seen in Sections 2.2 and 2.3 depending on the parameter values.
Damped oscillations are possible and are likely when there is little
resource immigration and emigration combined with either a
large consumer attack rate or a large resource carrying capacity.
However, a large immigration or emigration rate can prevent large
magnitude damped oscillations even when β is small.

2.5. Abiotic resource and saturating functional response

A saturating consumer functional response to an abiotic resource
is exemplified by the model

dN
dt

¼ bcRN
1þchR

�mN;

dR
dt

¼ i�eR� cRN
1þchR

: ð21Þ

In the absence of the consumer, the abiotic resource reacts the
same as in model (8). However, the consumer now exhibits a
Holling Type II functional response, which takes into account the
time it takes the consumer to handle one unit of resource, h.

The non-dimensional model is given by

d ~N
d~t

¼ ð ~R�1Þ ~N
1þγ ~R

;

εβ
d ~R
d~t

¼ 1�β ~R�ð1�βÞð1þγÞ
~R ~N

1þγ ~R
; ð22Þ

where

ε¼m
e
; ð23Þ

β¼ em
ciðb�mhÞ; ð24Þ

and

γ ¼ mh
b�mh

: ð25Þ

While (24) differs from (12) of model (9), the meaning of β has
not changed. Indeed,

β¼m=ðbc�cmhÞ
i=e

¼ R⋆

R⋆
abs

is the ratio of the coexistence resource equilibrium value to the
consumer-absent resource equilibrium value. As in (9), the coex-
istence equilibrium of (22) is an ecologically reasonable stable
node for values of 0oβo1.

The additional parameter, γ, is a measure of how the handling
time alters the resource coexistence equilibrium value. To see
this, denote R⋆

L as the coexistence equilibrium value of model (8),
where resource growth is abiotic and the consumer's functional
response is linear. Therefore,

R⋆
L ¼ m

bc
and R⋆ ¼ m

bc�cmh

are the resource coexistence equilibriums for models (8) and (21),
respectively. Using this notation,

γ ¼ R⋆�R⋆
L

R⋆
L

:

The parameter γ represents the difference between the resource
equilibrium when the consumer has a saturating response and
when the consumer has a linear functional response, scaled by
the resource's equilibrium value when the consumer's functional
response is linear. Requiring R⋆40, implies that γ40. Hence, for
conditions under which a stable (steady-state) coexistence equili-
brium occurs, R⋆4R⋆

L . In other words, with all else being equal,
a consumer population with a negligible handling time will
cause a greater reduction in the resource population density than
a consumer population with a significant handling time. This
matches our intuition. The rate of resource consumption will be
less for the consumer with the greater handling time, allowing the
resource population to persist at higher densities. As the handling
time approaches its ecological maximum, the consumer
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equilibrium density approaches zero while the resource equili-
brium density approaches R⋆

abs.
Notice (23) is the same as (13) from the equivalent model with

no handling time, model (9). Therefore, the meaning of ε is the
same as in the discussion concerning the retention time of the
abiotic resource under the specific conditions (see Section 2.3).
When ε51, or equivalently τRA5τN, the resource responds
quickly relative to the consumer. Separating time scales, the
resource tracks it quasi-equilibrium while the consumer dynamics
play out according to the IVP,

d ~N
d~t

¼ βþγ
2γð1�βÞþ

1�γ
2γ

~N�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ�β

2γð1�βÞ�
1þγ
2γ

~N
� �2

þ β
γð1�βÞ2

vuut ; ð26Þ

~Nð0Þ ¼ ~N0;

for 0oβo1 and 0oγ. This is a novel single-species density-
dependent model. While the form is not simple, the model has
some nice properties. The per capita growth rate decreases
monotonically with consumer density and approaches a negative
horizontal asymptote (see Section 2.8). A wide range of PCGR
curve shapes are possible for different values of β and γ in (26).

As expected, when γ, the effect of handling time, approaches
zero, the PCGR curves converge to those determined by a linear
functional response (14). Indeed, for small values of γ with γoβ,
the handling time is negligible and the PCGR curves of the
consumer are nearly identical to the concave up curves found in
Fig. 2. In cases where γ is very small but βoγ, the PCGR curves
still look very similar to those in Fig. 2; however, there is a small
range of consumer density values near zero where the two
differ. For this range of density values, the PCGR curve of a
consumer with a saturating response is concave down, resulting
in a noticeably smaller intrinsic growth rate compared to the same
consumer with a linear functional response. In either of these
cases, the consumer exhibits early-acting density-dependence.
The only difference between these two cases, is when βoγ the
strongest density-dependent effects do not occur for a small range
of densities very close to zero.

For large γ values, where γ41=
ffiffiffiffi
β

p
, the consumer's PCGR

curve is concave down for all consumer density values smaller
than the equilibrium density (Fig. 4). The consumer exhibits
late-acting density-dependence, where the steepest decline in
the PCGR curve occurs at high densities. These dynamics may be
understood with respect to the handling time. The consumer's
per capita growth rate will be most affected by a large handling
time when the resource is plentiful. Since the resource responds

quickly to the consumer, the resource is the most plentiful when
the consumer's density is low. As the consumer's density
increases, the resource density decreases, forcing the consumer
to spend more and more time trying to acquire the abiotic
resource on which it depends. At high consumer densities, the
resource has become so sparse that the ratio of the handling
time to the total time spent acquiring and handling the resource
is insignificant. The consumer's per capita growth rate then
becomes strongly density-dependent, taking on a shape similar
to that of Fig. 2 from the abiotic resource and linear functional
response model. The larger the handling time (the larger γ) the
higher the consumer density value at which this transition takes
place. As expected, the larger γ, the smaller the consumer's
intrinsic growth rate.

A popular single-species model, the θ�logistic model (Gilpin
and Ayala, 1973), also exhibits either early-acting (θo1) or late-
acting (θ41) density-dependence. Single-species model (26),
however, lifts the constraint that the strongest effects of density-
dependence must only be found at the extremes of the consumer's
density range. For βoγo1=

ffiffiffiffi
β

p
, the consumer exhibits the

strongest density-dependence at mid-range densities (Fig. 5).
For this range of γ the handling time is large enough to matter
at small densities, but transitions to being insignificant prior to
the consumer population reaching its equilibrium density. As γ
approaches β, density-dependence transitions from mid-acting to
early-acting, while as γ approaches 1=

ffiffiffiffi
β

p
it transitions to late-

acting.
Similar to the abiotic resource model with a linear func-

tional response, the shape of the consumer's PCGR curve differs
as β increases to one. In this case—when the resource coex-
istence equilibrium deviates very little from its consumer-
absent equilibrium—the consumer's PCGR curve becomes more
linear and the intrinsic growth rate becomes smaller. In other
words, if the consumer has very little affect upon the resource
population density then its dynamics could be accurately
represented by a logistic model with a small intrinsic
growth rate.

For εo1 no damped oscillations are expected and the robust-
ness of model (26) to increases in small ε is similar to that when
the functional response is linear. Additionally, as handling time is
increased, the consumer's effect on the resource is lessened,
broadening the situations in which the resource response is
considered fast and model (26) serves as a good approximation
for consumer dynamics.
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2.6. Biotic resource and saturating functional response

A biotic resource taken up by a consumer with a Type II
functional response may be modeled as

dN
dt

¼ bcRN
1þchR

�mN;

dR
dt

¼ rR 1�R
K

� �
� cRN
1þchR

; ð27Þ

where, as in (2), we assume that the resource dynamics in the
absence of the consumer are accurately represented by a logistic
model. As the handling time h approaches zero, model (2) is
recovered. Non-dimensionalizing (27) results in the model

d ~N
d~t

¼ ð ~R�1Þ ~N
1þγ ~R

;

ε
d ~R
d~t

¼ ~Rð1�β ~RÞ�ð1�βÞð1þγÞ
~R ~N

1þγ ~R
;

where

ε¼m
r
; ð28Þ

β¼ m
cKðb�mhÞ; ð29Þ

and

γ ¼ mh
b�mh

: ð30Þ

Notice that Eq. (30) describing the non-dimensional parameter
γ is the same as Eq. (25), from the model with an abiotic resource
and a consumer with a Type II functional response. Indeed, (30)
may be written as

γ ¼ R⋆�R⋆
L

R⋆
L

;

where R⋆
L is the resource equilibrium value of model (27) with a

handling time of zero, i.e. the resource equilibrium value of model
(2). Hence, γ indicates the effect of the handling time h has on the
system in the same manner as described in Section 2.5.

Also, since (28) and (29) may be rewritten as

ε¼ 1=r
1=m

¼ τRB
τN

and β¼m=ðbc�cmhÞ
K

¼ R⋆

R⋆
abs

;

respectively, it is clear that ε and β share the same meaning as
their counterparts from the biotic resource and linear functional
response model, or Eqs. (5) and (7), respectively. For ecological
situations when the biotic resource's time to increase one

unit when rare and consumer-free is much smaller than the
consumer's lifespan, the consumer's dynamics are approximately
described by the IVP

d ~N
d~t

¼ �ðβþγÞ
2γ2ð1�βÞþ

~N
γ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βþγ

2γ2ð1�βÞ

� �2

�βð1þγÞ ~N
γ3ð1�βÞ

s
; ð31Þ

~Nð0Þ ¼ ~N0o ~Nmax;

where

0oγo β
1�2β

for 0oβo1
2

and 0oγ for
1
2
rβo1:

These last two conditions must be met to ensure stability of the
steady-state coexistence equilibrium.

This novel single-species, density-dependent model is much
more complex and unintuitive than its related model with no
handling time, which is logistic. As expected, the PCGR curves con-
verge to a line as γ approaches zero. However, in general, model
(31) results in a per capita growth rate curve that is monotonically
decreasing and concave down on its domain (Fig. 6). Unlike (26),
the shape of the PCGR curves resulting from different parameter
ranges of β and γ have relatively little variation, with density-
dependence always acting most strongly at high densities.

With all else being equal, an increase in γ, or an increase in the
effect of handling time, has three consequences: (1) a decrease in
the consumer's intrinsic per capita growth rate, (2) a decrease in the
effect of density-dependence at lower consumer values, (3) an
increase in the severity of the effects of density-dependence at
higher consumer values, i.e. those closer to equilibrium. The first
two consequences also occurred in model (26), where an increase in
γ likewise represented an increase in the time it takes the consumer
to handle its resource. Therefore, the same explanations described
in Section 2.5 apply to model (31) for these consequences. The third
consequence, is a result that has to do with the end behavior of (31),
which will be discussed in more detail in Section 2.8.

As with all of the models presented here, the robustness of
model (31) to increases in the small parameter ε is tied to stability.
Similar to the biotic resource and linear functional response case,
a suppression-stability tradeoff (Murdoch et al., 2003) leads to
damped oscillations in the consumer-resource system when the
consumer significantly depresses the resource density. Stability
analysis reveals that varying handling time can have different
results for robustness, depending on how large or small of an
effect the consumer has on the resource population.
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2.7. Biotic resource, migration, and saturating functional response

The remaining combination of resource type and functional response
type considered is a system where a consumer with a saturating
functional response preys upon a biotic resource that migrates into
and out of the area considered. This open system may be written as

dN
dt

¼ bcRN
1þchR

�mN;

dR
dt

¼ rR 1�R
K

� �
þ i�eR� cRN

1þchR
: ð32Þ

The analysis of system (32) as laid out by the procedure described
in Section 2.1 is complex. Abrams (2009a) presented this system
as a density-dependence peculiarity that clearly could not be
closely approximated by a θ�logistic model. Abrams' second
figure in Abrams (2009a) shows the inverse of the consumer's
PCGR curve—with consumer density as a function of consumer
per capita growth rate—of system (32). Note that this function is
not one-to-one for the particular choice of parameter values,
indicating that the consumer's PCGR curve is not a function.
Indeed, for certain parameter values and at certain consumer
densities, the time scale separation problem has alternative
stable quasi-equilibrium states to which the resource could
rapidly grow or decline. This translates into the existence of
alternative per capita growth rates at some consumer densities
(Fig. 7). While phase plane analysis can determine which density
the resource is rapidly heading towards, it cannot do so without
knowledge of the resource density—something we lack when
utilizing a density-dependent single-species model for the con-
sumer. Hence, the “correct choice” of consumer per capita growth
rate for the given consumer density depends on the current state
of the full system and may vary greatly for initial resource
conditions that are close to one another (see Fig. A.1).

How often quasi-equilibrium bistability will arise for model
(32) under parameter ranges found in natural systems is unclear.
Preliminary analysis has shown that its occurrence may be linked
to the stability of the system. In general, since this problem did
not arise for the same model when the consumer's functional
response was linear, it is important to note that this situation
requires the consumer to have a significant, possibly very large,
handling time.

Regardless, a population that starts at a low consumer density
will trace a per capita growth rate curve with a stark mid-density
threshold. The PCGR curves for this model can have a small region
of consumer densities where density-dependence acts the stron-
gest. Fig. 7 clearly shows intense mid-acting density-dependence.
Mid-acting density-dependence is seen in only one of the

other abstracted models presented here, the abiotic resource and
saturating functional response model. Hence, a consumer with
a saturating functional response could experience mid-acting
density-dependence whether or not it consumes an abiotic or
biotic resource, as long as the biotic resource experiences some
migration.

In general, having multiple quasi-equilibrium choices prevents
the construction of a clear consumer PCGR function that depends
on consumer density alone. However, given the initial resource
value a single-species model for the consumer could be con-
structed. For parameter ranges where these complications do not
arise, a single-species model can be constructed as described in
Section 2.1; however, the formula for determining the PCGR curve
is complex and has been omitted.

2.8. High densities

Often, PCGR curves are used to understand information on
how a population grows to its equilibrium density. While the
order one single-species consumer models that were derived in
the previous sections have had many interesting differences
when considering consumer densities below equilibrium, they
also differ at densities above the equilibrium. One criticism of
the logistic model (Fig. 8, top left) is that the per capita growth
rate decreases without bound as consumer density increases.
This can make the logistic model unsuitable for predicting the
ways in which a population will decline. Interestingly, none of
the PCGR curves presented in Sections 2.2–2.6 have this prop-
erty (Fig. 8).

When the resource is abiotic, both a linear and a saturating
consumer functional response lead to PCGR curves with a hori-
zontal asymptote. As the density increases to very high densities
above equilibrium, the per capita death rate asymptotically appro-
aches �1 (scaled) or �m (unscaled). This is also the case when
a consumer with a linear functional response utilizes a biotic
resource whose density is affected by migration. While this system
can have PCGR curves that are approximately linear at consumer
densities smaller than its equilibrium value, these same curves do
not remain linear at high densities, in contrast to the logistic.
Instead they become concave up and approach a horizontal
asymptote of �1 (see bottom right in Fig. 8).

For a consumer that specializes on a biotic resource (no
migration), the end behavior is piecewise but still bounded. A
biotic resource without migration will always have the vertical
line ~R ¼ 0 as a nullcline. For consumer densities greater than some
~Nmax41, the second resource nullcline is not defined in the
positive plane and resource density declines rapidly towards
its quasi-equilibrium at zero. Since real ecological systems face
both demographic and environmental stochasticity, it is possible
that the resource would not recover from it's population den-
sity crashing to and remaining at densities close to zero for an
extended period of time. Here, we proceed under the assumption
that the resource density is still positive and only considered zero
up to first order. Substituting ~Rð ~NÞ ¼ 0 for all ~N4 ~Nmax results in a
scaled consumer per capita growth rate of �1 at high densities.
When the consumer has a linear functional response, the PCGR
curves of the classical logistic model would be truncated at
~Nmax ¼ 1=ð1�βÞ and continued as a horizontal line with value
�1. When the consumer's functional response is saturating
(bottom left of Fig. 8), the value of ~Nmax depends on both how
much the consumer depresses the resource density (β) and the
relative effect of the consumer's handling time (γ).

In the full consumer-resource system, when consumer densi-
ties are larger than ~Nmax and ε is a small parameter, the resource
density does drop extremely rapidly towards zero, often remaining
at very low densities before increasing to its equilibrium again (see
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Fig. 7. A consumer per capita growth rate curve from the biotic resource with
migration and consumer saturating functional response model (32). Notice that
there is a region of consumer densities for which the two curves overlap.
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Fig. A.2). While the piecewise approach to a single-species model
described above captures the rapid decline in resource, it is not as
good of an approximation of the dynamics that occur after this
(even for parameter values where the model was very good at
predicting consumer growth). As resource levels decrease towards
zero, they are reaching the same magnitudes as ε and the order
one solutions cannot capture the dynamics projected by the full
system. In this case, the limitations of the order one population
growth model are made very clear.

3. Discussion

When the resource responds quickly a single-species model can
be analytically derived which approximates the dynamics of
the consumer from an equivalent consumer-resource model.
When resource dynamics are biotic via the logistic model and
the consumer's functional response is linear, the consumer's single-
species dynamics are also logistic. When the resource dynamics
are abiotic and the consumer's functional response is linear, the
consumer's single-species per capita growth rate (PCGR) curve
is concave up, representing early-acting density-dependence.
If resources are biotic with migration, consumers can exhibit PCGR
curves that span the range from linear to concave up for densities
prior to the equilibrium. When handling time becomes significant,
the consumer can exhibit later acting density-dependence. For
abiotic resources and a saturating functional response, the con-
sumer's single-species per capita growth rate curve can have a
concave down region at low densities and a concave up region at
high densities, perhaps best described as mid-acting density-
dependence. With biotic resources and a saturating functional
response, the relationship is always concave down, i.e. late-acting
density-dependence. Finally, in the case of a biotic resource with
migration and a saturating functional response, the single-species

consumer PCGR curve can have a concave down region at low
consumer densities and a concave up region at high densities
connected by a sharp drop in growth rates or even overlapping
growth rates, where the choice amongst them depends on the
current density of the resource.

In biotic resources, a reduction in density due to consumer
predation leads to compensation in the population—the resource
either grows more or dies less at lower densities. In contrast, when
the resource is abiotic, the same amount of resource is entering
the system with each additional consumer but is being divided
over more consumers. Consequently, abiotic resources result in the
concave up relationship with the steepest drop in consumer per
capita growth rates occurring as consumers increase from
low densities. Saturating functional responses result in density-
dependence acting at high densities because, in contrast to
linear functional responses, consumers have limited effect on the
resource at low consumer densities. However, at higher consumer
densities the resource population has been reduced to a level
where handling time becomes less important, allowing the density-
dependent effects to play a strong role. Many of the patterns
observed in the specific models are combinations of these general
patterns.

Our derivation of a single-species model from a system where
a consumer predates upon a biotic resource was based on the
assumption that the biotic resource's dynamics were logistic in the
absence of the consumer. It should be noted that the logistic
model is itself a phenomenological single-species density-depen-
dent model. Since this paper is addressing situations in which it is
appropriate to estimate the dynamics of a population with a
single-species density-dependent model, it may seem circular that
such a model is assumed to be the base of a consumer-resource
system. On one hand, this illustrates how ubiquitous the logistic
equation is in ecology. However, it is not only the extensive use
of the logistic model that warrants its use. Singular perturbation
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analysis of a consumer-resource model, where an abiotic renew-
able resource did not have logistic dynamics, shows the order one
dynamics of the consumer to be logistic (Lakin and Van Den
Driessche, 1977). Hence, the logistic model may be considered an
appropriate approximation for this type of biotic consumer in the
absence of predation. The biotic consumer, however, may serve as
a biotic resource for another organism as in (2).

Instead of assuming the biotic resource has logistic dynamics,
one could examine a biotic resource which exhibits the nonlinear
per capita growth derived in Eq. (14). When this type of biotic
resource is paired with a consumer that has a linear functional
response, the single-species consumer per capita growth rate
would also have the same form as that shown in (14). Thus it is
not always the case that a biotic resource and a linear functional
response result in a linear per capita growth rate for the consumer.
The shape of the consumer's PCGR curve is dependent on how the
biotic resource is compensating for its own density loss.

Despite differences in the shape of the PCGR curves, the time
dynamics projected by each of the models we derived differ little
in that they all go to a stable equilibrium. For the same initial
condition, the consumer's path en route to the long-term equili-
brium will differ amongst models; however, the dynamics will be
qualitatively similar in that they all asymptotically rise to the
equilibrium in a monotonic way. It is interesting that the models
we derived can have such different PCGR curves, yet if they were
all parameterized as to best fit the same time series data set, then
the consumer dynamics that result from these PCGR curves may
be practically indistinguishable. However, distinguishing features
of the models, such as the location of the inflection point, can have
consequences for how these models behave when displaced from
their solo equilibrium. Differences in the shape of density-
dependence likely matter a great deal when embedded back into
food webs, during harvesting, or when interacting with variable
environments (Leirs et al., 1997). In some situations, the dynamics
or behavior of the system may by very sensitive to the exact shape
of the PCGR curve (Fussmann and Blasius, 2005). In these situa-
tions, there might be large consequences amongst the different
single-species models we characterize.

This work is related to previous work on the topics of abstract-
ing single-species models from larger systems and other works
looking at density-dependence in a consumer-resource system.
Our work is an example of what Schaffer (1981) termed “ecologi-
cal abstraction.” In our case, we have considered a system of two
interacting species, which we have presumed to be accurately
described by the given model, and reduced this system to an
ecological model considering only one species, the consumer.
The method in which we have chosen to carry out this process is
different from that proposed by Schaffer (1981) in that we did not
linearize about the equilibrium. Hence, under the assumption
of fast resource dynamics and sufficient stability conditions, our
models serve as a good approximation for consumer dynamics
even when the consumer's initial density is much lower than its
equilibrium value. Whereas Schaffer's method of reduction only
derives logistic single-species models, we have shown that order
one time-scale separation methods can derive single-species
models with non-logistic forms.

Besides the logistic model, only single-species model (14) has
been noted in previous work. Model (14) is a scaled version of the
model developed by Smith (1963) (see also Birch, 1999). This same
functional form was noted by Schoener (1973) when exploring
different ways of looking at near equilibrium per capita growth
rates of system (8)—the same model from which we derived (14).
Additionally, Thieme (2003) derived this functional form by
applying time scale separation to two different starting models:
consumer-resource model (8) and a model of adults cannibalizing
juveniles. While model (14) is often cited as an alternative to the

logistic model (Wu et al., 2009; Tsoularis and Wallace, 2002), it is
comparatively under-utilized (but see Li, 2012; Pan and Wan,
2009). In many cases the logistic model is used in place of it
(Tanner 1966). Our work provides support for the increased use of
model (14) in ecology.

The analytical work presented in this paper compliments
the single-species density-dependence work by Abrams (2009a).
Our work strengthens and confirms the ideas put forth by Abrams,
yet reframes some of the results in a format which can be
more widely utilized by others. The approach Abrams used to
look at the form of density-dependence of a consumer in a
consumer-resource system resulted in finding the inverse of what
we have been calling a consumer's PCGR curve. Typically one
thinks of a population's per capita growth rate as a function of
density, i.e. a particular population density value determines the
per capita growth rate. However, in Abrams' work the inverse of
this relation was plotted, i.e. consumer population density was
plotted as a function of per capita growth rate. Ideally, both cases
should contain all the important information; however, due to the
ease of comparison to previous knowledge and PCGR curves, there
is a value to transposing the figures. By writing per capita growth
rate as a function of density, early-, late-, and mid-acting density-
dependence can be clearly identified and the analytical expression
for a single-species model is obvious. Furthermore, having an
explicit single-species equation describing the consumer's dynamics
is of value. It allows for particular properties of individual models
derived from different consumer-resource systems to be individu-
ally analyzed in detail and compared. Moreover, it provides an
equation that could be used in modeling or to fit data.

Our analysis, which can be more rigorously grounded in
singular perturbation theory, upholds Abrams' results and numer-
ical findings. The curves determined using Abrams' method are
exactly the inverse of the PCGR curves derived by first order
time scale separation. Furthermore, our analysis strengthens the
one provided by Abrams, as it discusses when such curves are
expected to be accurate. In each of the six scenarios we consid-
ered, the derived models were only order one approximations.
These models were only expected to be descent approximations
when ε, a specified ratio between a consumer rate and a resource
rate, was small. In all cases, this ratio being small meant that the
resource responded rapidly relative to the consumer. Since it can
be shown that the order one consumer PCGR curves derived
via time scale separation are the inverses of Abrams' derivations,
Abrams' results are also the most accurate when the resource
response is fast. Moreover, model robustness to slight decreases in
resource response speed varied with the stability of the system,
being most robust when damped oscillation were not expected
and less robust as the system approached a neutral center.

In both Abrams' work and our work, the scenario of a saturat-
ing functional response and a biotic resource that migrates can
lead to PCGR curves that have consumer densities for which
multiple per capita growth rates are possible. There are other
interesting aspects within the same, or nearly the same, range of
consumer densities. When considering Abrams' approach to graph
the relationship between density and per capita growth rate it
becomes clear that there is a region of per capita growth rate
values which were calculated from a system that has an unstable
steady-state but stable consumer-resource cycles. Outside of this
region, the per capita growth rate values were calculated from
a consumer-resource system that tends to a stable steady-state
coexistence equilibrium. A given consumer-resource system of this
type, however, may tend to a stable steady-state equilibrium or
cycle around an unstable node. The observed system is not
expected to do both unless there has been a change in parameter
values over time. Time scale analysis revealed that the per capita
growth rates in this region of Abrams' graph correspond to
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unstable resource quasi-equilibriums, and therefore, these values
have been omitted from our PCGR curve (Fig. 7) for this model.
Nonetheless, the functional form of the consumer's dynamics and
density-dependence in this scenario were found to be unclear in
both Abrams' and our analysis.

For much of this paper we have emphasized the conditions
under which a single-species model is a good approximation of
the consumer dynamics. However, in a consumer-resource system
with a generally slow response of the resource there can be lots of
cycling time-dynamics, sometimes sustained. These dynamics will
have large departures from the proposed single-species models,
which can never capture such cycling. Of course, this all depends
on how close of an approximation is adequate. The single-
species models presented here may be adequate to characterize
the average behavior of a moderately cycling system as shown by
Abrams (2009a).

Our results raise many interesting and unresolved questions.
What type of consumer dynamics can be expected when the
resource or consumer equation involves a mechanistic derivation
of an Allee effect? What changes can we expect to see in consumer
density-dependence with other functional responses, such as a
Holling Type III or those proposed in Abrams (1990). Can lower
levels of food webs be approximated by the single-species models
we present, or do they need to be mechanistic at all lower trophic
levels? Can a single-species model be abstracted from an even
broader food web?

For example, if a continuous single-species model can be
abstracted from a three-species model (as has been done with
discrete models Geritz and Kisdi, 2004), then we could consider
the following situation. If a consumer with a linear functional res-
ponse specializes on an abiotic resource, we expect its dynamics to
be of form (14). Imagine that this same consumer is now exposed
to a predator. Using (14) as the base for the consumer model and
adding in loss due to predation, a predator-consumer system could
be constructed. If the consumer responds quickly relative to the
predator, then a single-species model for the predator could be
derived. Is the single-species model for the predator the same
model as would be derived given the full three-species system
with a focus on the predator? If not, in what ways do these models
differ? Indeed, similar questions could be raised about single-
species abstractions from models when other trophic level rela-
tionships, such as competition, are considered. It is possible that
other species in the food web are interacting with the focal species
in such a way that the single-species models derived here cannot
be used to approximate the consumer dynamics. However, time
series analysis of empirical data sets suggests single-species
models are adequate for generalist consumers (Murdoch et al.,
2002). The case of multiple resources can result in even more
complex per capita growth rate curves (Abrams, 2009b).

More broadly, there are a variety of basic model assumptions
utilized in our work which could be examined. The determinis-
tic, unstructured models used in this work simplify reality in
many ways. For example, they ignore spatial and temporal
heterogeneity, environmental and demographic stochasticity,
age and stage structure, genetic variation, and phenotypic
plasticity. Some features such as age structure may be difficult
to capture if the system is not in a stable age distribution.
However, other elements such as individual variation in demo-
graphic parameters, otherwise known as frailty, have been
successfully captured in simple models under certain circum-
stances (Vaupel et al., 1979). Following the lead of Abrams
(2009a), we examined density-dependence that can arise as a
consequence of resource utilization. Several other mechanisms
could lead to density-dependence, for example nest sites or
habitat limitation. Even in the case of resources, classic categor-
izations such as contest competition could be examined in

contrast to the scramble competition implied in classic
consumer-resource dynamics.

There are many situations in which a single-species model can
be used to approximate the dynamics of the consumer in a
consumer-resource model. In some cases, the form of this model
matches existing models of density-dependence. In other cases it
takes on more complex forms. However, in many situations the
form of the per capita growth rate curve can be derived and the
shape of that curve can be understood as the result of late-acting
and early-acting components. Our work provides a justification for
some existing forms of density-dependence as well as provides
some new equations for use in future research.
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