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ABSTRACT: We investigate the dynamics of a series of two-prey-one-
predator models in which the predator exhibits adaptive diet choice
based on the different energy contents and/or handling times of the
two prey species. The predator is efficient at exploiting its prey and
has a saturating functional response; these two features combine to
produce sustained population cycles over a wide range of parameter
values. Two types of models of behavioral change are compared. In
one class of models (“instantaneous choice”), the probability of ac-
ceptance of the poorer prey by the predator instantaneously ap-
proximates the optimal choice, given current prey densities. In the
second class of models (“dynamic choice”), the probability of ac-
ceptance of the poorer prey is a dynamic variable, which begins to
change in an adaptive direction when prey densities change but which
requires a finite amount of time to approach the new optimal be-
havior. The two types of models frequently predict qualitatively dif-
ferent population dynamics of the three-species system, with chaotic
dynamics and complex cycles being a common outcome only in the
dynamic choice models. In dynamic choice models, factors that re-
duce the rate of behavioral change when the probability of accepting
the poorer prey approaches extreme values often produce complex
population dynamics. Instantaneous and dynamic models often pre-
dict different average population densities and different indirect in-
teractions between prey species. Alternative dynamic models of be-
havior are analyzed and suggest, first, that instantaneous choice
models may be good approximations in some circumstances and,
second, that different types of dynamic choice models often lead to
significantly different population dynamics. The results suggest pos-
sible behavioral mechanisms leading to complex population dynam-
ics and highlight the need for more empirical study of the dynamics
of behavioral change.
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The question of how consumers choose resources has been
of long-standing interest to ecologists. Most theory as-
sumes that predators (consumers) will choose prey (re-
sources) that maximize their long-term rate of energy gain
when there are no nutritional requirements or costs that
modify this goal (Pyke et al. 1977; Stephens and Krebs
1986). One of the first foraging problems considered by
theorists was that of diet choice in situations where prey
differ only in energy content and handling time and where
prey items are encountered randomly within a homoge-
neous foraging area (Schoener 1971; Charnov 1976). The
solution to the energy maximization problem in this case
is to rank prey items based on the ratio of energy content
divided by handling time and only include an item in the
diet if the abundance of the higher-ranked items is below
a threshold level. A wealth of empirical studies confirmed
the broad outlines of this solution, but discrimination
against items that should have been rejected was almost
never perfect (Pyke 1984). However, few empirical studies
have tried to determine what factors influence the time
course of behavioral change when a low-quality prey is
added to or dropped from the diet (but see Getty and
Krebs 1985).

A number of theoretical studies have explored the pop-
ulation dynamical consequences of this diet choice rule,
usually in the context of a one-predator-two-prey system
(e.g., Gleeson and Wilson 1986; Fryxell and Lundberg
1994, 1998; Krivan 1996; Genkai-Kato and Yamamura
1999; Krivan and Sikder 1999; van Baalen et al. 2001).
The majority of works suggest that adaptive diet choice
leads to an increase in system stability relative to an in-
discriminate generalist predator, where stability has been
measured by the probability of local stability of the equi-
librium (Gleeson and Wilson 1986; Fryxell and Lundberg
1994), by the range of parameters yielding permanence
(i.e., populations bounded away from zero densities; Kri-
van and Sikder 1999), or by a decreased amplitude of
population cycles (Gleeson and Wilson 1986; Krivan 1996;
van Baalen et al. 2001). The comparisons of stability in
systems with a specialist predator (that eats only the better
prey type) or an adaptive generalist forager have been more
equivocal. Fryxell and Lundberg (1994) found that local
stability could be promoted by adaptive foraging on a



second, lower-quality food. However, this stabilization de-
pended on the fact that diet choice in their model was
imperfect (Fryxell and Lundberg 1994, van Baalen et al.
2001). Krivan and Sikder (1999) show that adaptive gen-
eralist systems are permanent less often than are specialist
systems, while Krivan (1996) and van Baalen et al. (2001)
suggest that the amplitude of oscillations may be lower in
the adaptive generalist system than in the specialist system.

An assumption common to all of the models discussed
in the previous paragraph is that foragers instantaneously
adopt the new optimal diet or some approximation to it
when prey densities change. In other words, the probability
of consuming the poorer-quality prey at any point in time
is purely a function of the current prey densities and is
unaffected by previous food densities or the previous for-
aging strategy. This is also a common assumption in mod-
els of switching by predators (Tansky 1978; Matsuda 1985;
Matsuda et al. 1986; Krivan 1997; van Baalen et al. 2001)
and other models of behavioral choices (Abrams 1982,
1984, 1992). This assumption requires reevaluation be-
cause consumption behaviors cannot in general respond
instantaneously to changes in food densities. If food den-
sities change, organisms must be able to detect those
changes before making any adaptive shift in foraging be-
havior. Sampling is inherently both time-consuming and
stochastic, so that rapid behavioral change is likely to entail
an increased frequency of errors. Once a decision to change
has been made, attaining the new optimal diet may require
training or learning both to recognize and to capture the
new type of food. More general models of learning have
predicted that changes in behavior require time and that
shifts occur most rapidly when the attendant difference in
fitness is greatest (Harley 1981; Boyd and Richerson 1985;
Stephens and Clement 1998). In addition, recent work on
population dynamic models with switching (Abrams 1999)
has suggested that at least some models of dynamic be-
havioral change can result in very different system prop-
erties than do models with instantaneous change.

The purpose of this article is to explore the population
dynamic consequences of modeling predator diet choice
as a dynamic rather than an instantaneous process. In the
class of dynamic models examined in greatest detail here,
the probability that a randomly chosen predator individual
will attack an individual of the poorer prey type increases
or decreases in a continuous manner, with the rate and
direction of change being determined by the fitness gained
in making a switch. Alternative dynamic models are ex-
amined in somewhat less detail. The ability to make be-
havioral shifts is an adaptation to an environment where
food densities vary over time. In the models we examine
here, food density varies because of the inherently unstable
interaction of predator and prey. There is abundant evi-
dence that many natural predator-prey systems have sus-
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tained fluctuations in population densities (Royama 1992;
Turchin and Taylor 1992; Ellner and Tuchin 1995; Kendall
et al. 1998). It has also been shown that whether a pop-
ulation undergoes cycles often alters the qualitative effect
of changes in environmental parameters on population
densities and species interactions (Abrams et al. 1998).
Our comparison of dynamic and instantaneous models of
diet expansion concentrates on four major population-
level consequences: the qualitative nature of population
dynamics, the local stability of the equilibrium point, the
average densities of the three species in the system, and
the indirect interactions between prey species via their
effects on a common predator.

Models

Our model of the ecological interactions follows the one-
predator-two-prey model of Fryxell and Lundberg (1994):

dN, N,
;2 71114-1’1]\]11—?1
. N N; (la)
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dN, + 1,N,|1 N,
ket R, _2
dt 2 214V2 K,
_ q¢, N, N, (1b)
1+ h,e,N, + gh,c,N,’
dN, b,c,N, + gb,c, N,
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where prey densities are N, and N, and the predator density
is N;. Growth of prey species i is logistic with intrinsic
rate of increase r, and carrying capacity K, In addition,
there is immigration of prey into the system at an instan-
taneous rate m,. Immigration prevents prey densities from
reaching extremely low levels and is expected when (as is
common) prey are more widely distributed than are their
predators. The encounter rate per unit of prey density by
a searching predator is given by ¢; for prey species i. Pred-
ators have an instantaneous per capita death rate of d. We
assume that prey 1 is more profitable than prey 2
(b,/h, > b,/h,), where b, is the energy content of prey i
and h; is the handling time of prey i. Predators always
attack the more profitable prey, species 1, when encoun-
tered. However, the probability, denoted g, of attacking
the poorer prey, species 2, can vary between 0 and 1. The
formulation in equations (1) assumes that the population
can be characterized by a single probability g, which im-
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plies that all individuals in the population have a value of
q that is close to the population mean. Alternatives to this
assumption are considered below.

The behavioral scenario underlying the models assumes
that an individual forager, characterized by an attack prob-
ability g, either samples the consequences of a short-term
change in g or gathers information on prey densities and
uses the result of that process to decide whether and how
to change ¢ for a longer period. The probability of making
a long-term change in ¢, the magnitude of that change,
or both increase with the fitness difference detected by the
short sampling period. We assume that the population of
predators is characterized by a small variance in values of
q so that all individuals have attack probabilities close to
the population mean g*. The rate of sampling is not con-
stant but decreases as the trait approaches either of its
limiting values (0 and 1). There are several reasons for
this decrease near extreme values. The most general is that
the closer an individual’s trait is to 0 (for example), the
smaller is the maximum possible change in the direction
of 0. A second reason is that some individuals in the trait
distribution are likely to already have g = 0 when g" is
close to 0. Finally, it may be advantageous to reduce sam-
pling when ¢ is close to an extreme value. Because extreme
values are the only possible optima, it is likely to be more
important to determine the optimal direction of behavioral
change (via sampling) when q is intermediate than when
it is extreme.

This scenario can be described quantitatively by a model
in which the rate of change of g is an increasing function
of the change in individual predator fitness (W), given a
unit change in the individual’s probability of attack of the
poorer prey, that is, the predator’s fitness gradient with
respect to g. Here we assume that change is simply pro-
portional to dW/dg. This derivative is multiplied by a func-
tion V that reflects decreased sampling at extreme trait
values; this function depends on the mean trait value and
approaches 0 when g" approaches 0 or 1. This yields the
following general equation describing the rate of change
in the mean trait:

dq*
dt

aw
dq q=q*.
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Models based on equation (2) or other dynamic rules for
the rate of change of g will be referred to as dynamic
choice (DC) models. Equation (2) can be derived from
quantitative genetics (see Lande 1976; applied in Iwasa et
al. 1991; Taper and Case 1992; Abrams and Matsuda
19974, 1997b). This form has also been proposed previ-
ously as a description of behavioral change in Abrams
(1992, 1999), Abrams et al. (1993), and Taylor and Day

(1997). The function V is biologically motivated, but it is
also necessary to prevent g* from becoming negative or
exceeding 1 for some parameter sets. If the distribution
of traits around the mean is assumed to be narrow enough,
then the average fitness gradient experienced by individ-
uals in the population can be approximated by the gradient
of an individual possessing the mean trait g* (Abrams et
al. 1993). In the following, we drop the distinction between
q and q" because of this assumption.

In the most extensive set of the simulations reported
below, the function V is given by

Vig =2"vq"(1 — q". 3)

The parameter » is the maximum of V (attained when
q = 1/2) and is a general scaling factor for the rate of
change in g. The parameter n describes how rapidly the
function V decreases as g departs from 1/2; large values
of n make behavioral change become slow when it is fur-
ther from the extreme values of ¢ = 0 or ¢ = 1. The factor
2*" is a constant that makes the maximum value of V
independent of the shape parameter n. Our most extensive
set of simulations assumes n = 2, which implies that the
rate of change toward either extreme declines significantly
when ¢ is still some distance away from the extreme. Any
positive exponent (#) in expression (3) means that moving
away from an extreme trait value (close to 0 or 1) is always
relatively slow, even when » is large. This property reflects
reduced behavioral sampling when conditions have fa-
vored one extreme value of q over a long time. An ex-
ponent #n > 1 is likely to produce a particularly significant
lag in the behavioral response and is thus a case that is
particularly likely to differ from the instantaneous model.
Combining the fitness expression implied by equation (1¢)
with equations (2) and (3) and assuming n = 2 yield the
following dynamics of g:
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The quantity in braces is the slope of fitness (instantaneous
per capita growth) with respect to q.

Under instantaneous adaptation, g = 0 or ¢ = 1 de-
pending on whether the density of the better quality prey
N, is greater or less than the following threshold density:

b,

(o (bth - .

b 2

1’:

Because errors prevent perfect step functions from occur-



ring in real diet choice scenarios, and because the step
function form of the optimal g creates problems for nu-
merical integration, we will follow Fryxell and Lundberg
(1994) in approximating this optimal step function by the
following sigmoid function of N;:
7’

=—, 6
n°+ Nf ©)

q

where 7 is the threshold density of prey 1 from equation
(5). The parameter z in equation (6) is a positive integer
that determines closeness of the predator diet choice to
the optimal step function; q approaches a step function
as z becomes very large (z>> 1). When z is small, a sig-
nificant fraction of the poorer prey are ignored when they
should be attacked, and similarly, many are attacked when
they should be ignored. Equations (1) with expression (6)
substituted for g will be referred to as the instantaneous
choice (IC) model.

Methods

Numerical integrations of both DC and IC systems were
carried out using a C++ implementation of a fourth-
order Runge-Kutta method with adaptive step size (Press
et al. 1992). Many calculations were replicated using the
NDSolve function in Mathematica (Wolfram 1999). Non-
equilibrium dynamics were classified based on the Lya-
punov exponent, calculated using a C+ + implementation
of the method of Wolf et al. (1985). Periodic solutions
were further classified according to their complexity; cycles
were classified as complex if at least one variable exhibited
two or more local maxima over the course of a cycle. If
all variables had only a single local maximum over the
cycle, they were classified as simple cycles. The arithmetic
average densities over time were used to define the indirect
interactions between prey species.

The full parameter space of this model is too large to
examine exhaustively for either DC or IC model. Our
approach was to carry out a very detailed analysis of a set
of systems having common values for most parameters
(m; =0.005, =1, =5, and h, =2 for i =1, 2;
d = 04) over a broad range of the parameters b,, K, =
K, = K, and two alternative values of b,. These values
represent a relatively high immigration rate, a relatively
low half-saturation constant for the predator’s functional
response, and a relatively efficient predator. Such systems
cycle over a wide range of carrying capacities and energy
contents. The ranges of values for b, and K were 1.0-6
and 0—4, respectively. For the other parameter values that
we adopted, values of b, >6 and K,>4 lead to either
extremely low equilibrium prey densities or cycles with
extremely low minimum prey densities that would make
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them unlikely to persist in finite populations. The two
alternative values of b, were chosen to lie on either side
of the value at which prey 2 is just sufficiently rewarding
to be included in the diet at the equilibrium point
(b, = dh,). Values that differ greatly from this threshold
result in either constant inclusion or exclusion of prey 2
being the optimal strategy over most of the cycle, so diet
choice becomes irrelevant. The key parameters determin-
ing the maximum rate of change of g in the two models
were » = 18.75 and z = 30. These values were large
enough so that significant increases in their magnitude
had little effect on dynamics, but they were not so large
as to cause problems in the numerical solution of the
equations. We will refer to the above set of values as the
standard parameter set. Dependence of the results on the
standard parameters was examined for a more limited set
of simulations using a variety of alternative parameter
combinations. These alternative parameters and some al-
ternative models are discussed below.

Results
Stability and Dynamics for Standard Parameters

Figure 1 summarizes the dynamics that occurred over the
b,-K parameter space for the standard set of other param-
eters. The initial set of simulations used a fixed set of initial
conditions. We used a second set of simulations with ran-
dom initial conditions to find alternative attractors and
then mapped the regions where each attractor had a non-
zero basin of attraction by continuing a given solution in
both directions along each parameter axis. The four panels
of figure 1 correspond to cases where the poorer prey is
(b, = 0.9) or is not (b, = 0.7) included in the diet at the
equilibrium point for both the IC and DC models. The
form of the dynamics was classified as: predator extinction,
locally stable point equilibrium with all three species, sim-
ple limit cycles, complex cycles, chaotic dynamics, and two
alternative attractors. The alternatives in most cases were
either two simple limit cycles or a stable point and a simple
limit cycle. In some cases the largest Lyapunov exponent
was very close to 0, making it impossible to determine
whether the dynamics were chaotic or periodic given the
length of our simulations; such cases are also distinguished
in figure 1.

Some broad features of the division of parameter space
into different dynamic regimes are similar for all panels
in figure 1. At sufficiently low carrying capacities when
the energy content of the better prey, b,, is relatively low,
there is a stable equilibrium point. A stable equilibrium
also occurs at high b, for the entire range of carrying
capacities examined. The high value of b, decreases the
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Figure 1: Qualitative form of the dynamics of the dynamic (DC) and instantaneous (IC) diet choice models for the standard parameter set:
n=rn=1,m =m=0.005h =h =2,¢=c =05d= 0.4 DCmodel » = 18.75; IC model z = 30. The meaning of the colors is as follows:
white, predator extinction; red, point equilibrium; dark blue, simple limit cycles; yellow, complex cycles; black, chaos; green, possibly chaotic
(indeterminate maximum Lyapunov exponent); light blue (teal), regions with alternative attractors. A, DC model, b, = 0.7 (b, < dh,). B, DC model,

b, = 0.9 (b,> dh,). C, IC model, b, = 0.7. D, IC model, b, = 0.9.

equilibrium density of that prey species sufficiently that
immigration (which is stabilizing) becomes a major com-
ponent of population growth. The size of this region of
stability at high b, is affected by the form of the behavioral
dynamics and by the energetic value of the poorer prey;
the region is largest for the IC model when prey 2 is not
in the equilibrium diet. If only the superior prey is present
with the predator, the boundaries for different types of

dynamics are very similar to those in figure 1A, except
that the area with alternative attractors in figure 1 only
has simple limit cycles in the one-prey system.

The broad similarities of IC and DC models in the lo-
cations of different dynamic patterns in parameter space
were coupled with some significant differences in the lo-
cations of the boundaries between stable and unstable dy-
namics and many cases of significant differences in the



qualitative form of dynamics when there were cycles. Three
of the most notable differences are discussed next.

Differences in Parameters Yielding Stable Equilibria. Stable
equilibria were more common in the IC model than in
the DC model (given the standard parameters) when
b, < dh, but less common in the IC model than in the DC
model when b, > dh,. The increased stability in the IC
model when prey 2 was relatively unrewarding was because
the predator was unable to specialize as completely on the
higher-quality prey as was possible in the DC model. Spe-
cialization is the optimal strategy when b, is relatively large
and when b, < dh,, and a specialist system with a large b,
always cycles. However, the assumed imperfection in the
strategy of the IC predator, together with the relatively
large handling times and capture rates in this example,
meant that even a small consumption of the less-rewarding
prey reduced the consumption of the better prey signifi-
cantly. This stabilized the system at large values of b, in
the IC model when consuming prey 2 was maladaptive at
equilibrium. In the DC model, g was able to approach 0
very closely, so that cycles in the better quality prey oc-
curred over a wider range of parameters.

When b, > dh,, the optimum strategy is to become a
complete generalist at equilibrium. When b, is large
enough, the equilibrium is stable as the result of the large
relative contribution of immigration to prey growth, given
the small equilibrium population size of prey 1. In the IC
model, this equilibrium is locally but not globally stable.
When cycles occur, the choice parameter g varies over
nearly its entire range of 1-0, with significant times at
intermediate levels when the density of prey 1 is close to
its threshold. This prevents the system from remaining for
long periods with low enough densities of both species
that immigration dominates intrinsic prey population
growth. In the DC model, behavioral dynamics slow down
as q approaches 1, so the brief periods when g drops (be-
cause of a peak in the abundance of species 1) do not
prevent the longer-term trend toward g = 1. This de-
creased relative stability of the IC model at high b, occurs
for a wide range of alternative parameters.

Differences in the Presence and Nature of Alternative At-
tractors. The types of alternative attractors and the areas
of parameter space yielding these alternative attractors dif-
fered markedly between the two behavioral models. One
category of alternative attractors that occurs in the IC
model for high values of b, when b, > dh, was discussed
above. When b, < dh,, there are different regions of pa-
rameter space with different types of alternative attractors
in the IC and DC models. In the IC model, the alternatives
are a (locally) stable equilibrium and a limit cycle having
high amplitude closely synchronized fluctuations of both
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prey. In the DC model (when b, < dh,), the alternatives
are large amplitude and roughly synchronous fluctuations
in both prey or smaller amplitude cycles with a lower mean
density of the high-quality prey and a higher mean (close
to the carrying capacity) of the poorer prey. When the
poorer prey was part of the optimal equilibrium diet, al-
ternative attractors in the DC model were found only for
very narrow regions of parameter space that lay on the
border of parameter regions that had significantly different
dynamics (these do not appear in fig. 1B).

Differences in the Qualitative Form of the Population Dy-
namics. Complex cycles and chaos occurred almost exclu-
sively in the DC model. For our standard parameter set,
these dynamics were only common in the case where b,
was sufficient for inclusion of prey 2 in the equilibrium
diet (b, > dh,). There were a few isolated cases of chaotic
dynamics when b, was below the threshold for equilibrium
diet inclusion, given the DC model and the standard pa-
rameter set, but these do not appear in figure 1A. Some
other parameters (noted below) resulted in large parameter
regions producing chaotic dynamics when the poorer
prey’s value fell below the threshold (b, < dh,). The DC
model produced more complex dynamics than did the IC
model because of the interaction between population and
behavioral dynamics in the former. In the IC model, be-
havioral choice is necessarily synchronized with changes
in prey abundance, resulting in simpler dynamics. The
(relative) lack of dynamic complexity produced by the DC
model when b, < dh, can be attributed to the fact that, in
this case, it is seldom adaptive to add the poorer prey to
the diet, given the parameters used here. As a result, pop-
ulation cycles were mainly influenced by the interaction
of the predator and the better prey species.

Figure 1B shows that under the DC model with b, >
dh,, chaos or complex cycles occur over a wide range of
parameters. Figure 2 presents some examples of the actual
differences in the time course of population densities. In
the top and bottom panels, the DC model dynamics are
complex cycles, while in the middle panel they are chaotic.
All of the IC dynamics are simple cycles. In some cases
(e.g., the top panel of fig. 2), there are relatively minor
differences in cycle period and amplitude between the two
models, but for other parameters, differences are often
substantial (as in the middle and bottom pairs of graphs
in fig. 2). It is clear from figures 1B and 1D that qualitative
differences in dynamics between IC and DC models char-
acterize a large fraction of b,-K parameter space under the
standard parameter set when b, > dh,. Complex dynamics
are common in systems with two different and unsyn-
chronized oscillating components. In the DC model, the
lag in the response of the behavioral variable g to changes
in population density produces the more complicated dy-
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Figure 2: Samples of the dynamics of the DC and IC models for the standard parameter set: r, = r, = 1, m; = m, = 0.005, h, = h, =2, ¢, =
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namics shown in the left-hand panels of figure 2. This lag
can be pronounced in spite of the rapid maximum rate
of behavioral change because the dynamics of g slow down
when its value approaches 0 or 1.

Local Stability and Dynamics for Other
Demographic Parameters

To what extent do the large differences between IC and
DC model dynamics depend on the particular parameters
we have explored? We examined a large set of randomly
generated parameter combinations and also varied each
parameter in the standard set individually to determine
whether the major differences between DC and IC models
described above were atypical. The results, summarized in
table 1, suggest that although the two models do not always
differ greatly, they do so for a wide range of parameters.
The results for very low prey immigration rates are par-
ticularly significant because they show that chaotic dy-
namics can also occur when the poorer prey is not included
in the equilibrium diet. When immigration rates were set
to 1077, the percentage of b,-K parameter space that pro-
duced complex cycles or chaos when b, = 0.7 was in-
creased from a few isolated points to close to 30% of the
b,-K parameter space shown in figure 1. For most of the
parameters examined, if the variation in the better prey is
sufficient that it is repeatedly adaptive for the predator to
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switch from specialization to generalization (or vice versa),
our DC model frequently predicts different (and often
more complex) dynamics than does the instantaneous-
choice model. On the other hand, dynamic choice is sta-
bilizing relative to instantaneous choice when both prey
immigration and the quality of the better prey are high.

The results in table 1 do not include the parameters
involved in the scaling function V. We noted earlier that
the dynamics were insensitive to the adaptive rate constant
v when it was large. The fraction of parameter space yield-
ing chaos or complex cycles in figure 1B (b, > dh,) was
only slightly changed by increasing the rate constant »
fivefold to 93.75; the fraction of b,-K parameter space
producing complex cycles increased from 15.9% to 18.8%,
while the fraction producing chaos changed from 12.2%
to 12.5%. Chaotic dynamics occurred in a similar region
of parameter space for the higher ». Much lower rates of
adaptive change did have a major impact on the nature
of dynamics and the parameters where complex cycles or
chaos occurred. For example, when » = 2, the area with
a stable equilibrium in figure 1B was greatly reduced (from
12% to 5%) while the combined frequency of complex
cycles and chaos increased (from 28% to 50%). Lower
values of z (z = 2) in the IC model increased the area
with local stability slightly but did not produce qualita-
tively different dynamics.

The exponent # in equation (3) determines the rate at

Table 1: Effects of changing parameters from those in the standard parameter set on the difference between the dynamics of

DC and IC models

Difference in dynamic complexity within

Parameter(s) changed

Difference in stable region

the unstable region®

Capture rates ¢;

Handling times, h,, differ
rather than energy
contents

Predator demographic rates
(multiplicative decreases
in both b, and d with sim-
ilar increases in »)

Prey immigration m,

Poorer prey profitability b,

Symmetry of prey parame-
ters (equality of 1, K, ¢
m)

Qualitatively similar to figure 1 for larger or
smaller ¢; similar small changes for IC
and DC models

Qualitatively similar to figure 1 with similar
small changes for IC and DC models

Qualitatively similar to figure 1

Lower immigration removes stable region at
high b, and reduces stable region in both
models

Minor effects unless b, is much larger, which
reduces stable region

Quantitative but not qualitative change in
both models, provided the better prey
produces cycles

Smaller ¢, increases size of chaotic region for
DC models until ¢; is significantly <1; in-
creases in ¢; have small effects in DC
model

Chaos in DC model often becomes complex
cycles; differences in prey densities be-
tween DC and IC models are reduced

Slower rates reduce chaos and complex dy-
namics in DC model and often change
chaos to complex cycles

Much lower m produces a modest reduction
in the chaotic region for the DC model
when b, > dh, but greatly increases chaos
when b, < dh,

Probability of complex dynamics in the DC
model is reduced as b, moves away from
b, = dh,

Small or moderate asymmetry often in-
creases the range of chaotic dynamics in
most DC models

* The IC model was not observed to exhibit complex cycles or chaos under any of these parameter changes.
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which behavioral dynamics slow as they approach a lim-
iting value of the trait. Increasing this exponent to 3 or 4
had only small effects on parameter ranges that produced
particular types of dynamics. However, reducing » suffi-
ciently produced very significant changes in the form of
the dynamics of the DC model. These lower values reduce
the lag in the response of g to population densities when
q is close to 0 or 1. If the DC simulations in figure 1 are
altered so that n = 1, the categories of dynamics shown
in figure 5 result. The distribution of different types of
dynamics over parameter space is similar to the results in
figure 1 (n = 2) when b, = 0.7, except there is a region
of complex cycles and a few cases of chaos when b, is
relatively low. The results for b, = 0.9 have much less
chaos and a larger region of alternative attractors (one of
which is a complex cycle) than for the corresponding pa-
rameters when n = 2.

This case (n = 1) and smaller values of n required a
modification of the trait dynamic equation (3) to prevent
q from becoming negative or >1 when adaptive change
was rapid. This was accomplished by adding a function,
elg® — e/(1 — g)%, to the equation for dg/dt. Here, ¢ is a
very small constant (on the order of 107° or less). This
function pushes the trait away from its limiting values but
has insignificant effects on dynamics when the trait has
an intermediate value. Adding such a function to the orig-
inal model for # = 2 has no significant effect on the pat-
tern of dynamics over parameter space provided ¢ is small
enough. This function also allows us to examine the dy-
namics when n = 0. Here, there is no slowing of behav-
ioral change until g is extremely close to 0 or 1, and then
the slowing only affects the dynamics when selection favors
a value more extreme than the current one. Results (not
shown) for n = 0 reveal fewer cases of chaos or complex
cycles than when n = 1 or n = 2. However, complex cy-
cles still occur over significant ranges of parameters, even
at quite high rates of behavioral change (v > 10). Complex
cycles occur for cases with b, above and below the thresh-
old for equilibrium diet inclusion. Thus, although # can
have a large effect on dynamics, all values of n that we
examined lead to significant differences between IC and
DC models.

Mean Population Densities and Indirect Interactions
for the Standard Parameters

The difference in dynamics between IC and DC models
might be of little consequence if this difference had little
effect on the population densities of the three species or
on how those densities changed with removal or addition
of other species in the system. However, as suggested by
figure 2 and as detailed below, when the models differ in
the qualitative form of their dynamics, they also frequently

differ significantly in population densities and the indirect
effects between prey species that those densities imply.
Here we return to the DC model analyzed in greatest detail,
characterized by n = 2.

Mean Densities. The mean densities of the two prey under
the IC model are similar to those under the DC model
for a significant fraction of b,-K parameter space when
b, < dh,. The qualitative form of the dynamics is often
similar across models in this case. There are large differ-
ences in densities between the two types of models when
b, > dh,, corresponding to large differences in the type of
dynamics. Usually the density of prey 2 is lower in the DC
model than in the IC as the result of greater consumption
of prey 2 in the DC model. This reduces consumption
(and hence overexploitation) of prey 1, allowing the pred-
ator to achieve higher densities in the DC model. Tran-
sitions between chaotic and periodic dynamics result in a
complicated pattern of change in average densities over
b,-K parameter space in the DC model. Figure 3 sum-
marizes the difference between the mean population den-
sities under the two models. This difference was scaled
relative to the mean of the densities in the two models
and was expressed as a percent; that is, 100(N;pc —
N, 1c)/[0.5(N; pc + N, c)]. Figure 3 shows the areas of pa-
rameter space in which one or more of the species differed
by at least 20% or by at least 50% between the IC and
DC models. Large differences clearly characterize a large
fraction of the parameter space. Minimum densities also
differed significantly between IC and DC models for the
parameters shown in figure 3, with the DC model generally
having a higher minimum density of prey 1 (which always
has a lower mean abundance than prey 2).

Indirect Interactions. Prey affect each other indirectly via
both the predator’s population density and the predator’s
behavior (i.e., q). Indirect interactions between the two
prey species were quantified by comparing the mean prey
density in a predator-prey system with only one prey spe-
cies present with the mean density when both prey were
present. Effects were measured by the percent change of
the mean population density of the focal prey following
the addition of the second prey species after allowing the
system to reach its final dynamics. The indirect effects were
designated by an ordered pair whose first element was the
sign of the change in the mean density of the first (superior
prey) species following introduction of the second (inferior
prey); the second element was the sign of the change in
the second following introduction of the first. Effects were
classified as zero if they were less than a small threshold
value (1% or 5%). Table 2 summarizes the percentages of
parameter space with each possible type of indirect effect
in the two models, using the 1% threshold. Figure 4 shows
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B) b, = 0.9

Figure 3: Areas of parameter space where the average density of at least one of the three species differed between DC and IC models by either
20% or 50%, assuming the standard parameter set. Black represents zero or small difference in the average densities, gray represents a >20%
difference, and white represents a >50% difference between models for at least one species.

areas of parameter space with different types of interaction
for both the IC and DC models (with a 5% threshold for
a nonzero interaction).

One of the most conspicuous differences between the
two models is the much greater percentage of parameter
space yielding (+, —) interactions in the DC model where
the better prey benefits from the presence of the poorer
prey. This occurs when b, > dh,, that is, when the poorer
prey are adequate for predator subsistence. Here the mod-
est increase in N, is due to the increased amplitude of
cycles in the two-prey system; larger cycles often increase
mean prey density in predator-multiprey systems (Abrams
et al. 1998). The poorer quality prey typically experiences
a large decrease in density due to the presence of the better
prey in both DC and IC models. This occurs because the
poorer prey experiences a greater predator population
when the more nutritious prey 1 is present. The same
parameters that result in (+, —) interactions in the DC
model often produced (—, —) interactions in the IC
model; here, prey 2 generally has a small negative effect
on prey 1. The close coupling of the two prey populations
entailed by the IC model tends to result in stronger ap-
parent competitive interactions than in the DC model. If
we restrict attention to indirect effects that cause a >40%
change in the density of one of the two prey, there are
still many regions of parameter space with significant ef-

fects when b, = 0.9 (i.e., b, > dh,). Here the IC model
predicts that ~30% of parameter space will have significant
indirect interactions, whereas the DC model predicts that
~65% of parameter space will have significant indirect
interactions.

Alternative Rules for Behavioral Dynamics

It is clear that at least one rule for behavioral dynamics
frequently produces population dynamics that differ
greatly from the analogous models in which the behavior
continuously approximates the optimal behavior for cur-
rent prey densities. However, it is not clear whether the
dynamic rule that was investigated here represents a good
approximation to many (or any) real predators. There are
many models that can equally validly claim to represent
plausible predator choice behavior. A similarly detailed
analysis of a large number of such models requires several
additional articles. However, we have carried out less ex-
tensive sets of simulations for a range of alternative models
and report on some of the results for two classes of models
here.

The first alternative model assumes that the predator
uses the optimal threshold formula (or the approximation
given by eq. [6]) but uses an estimate of the density of
prey 1, which lags behind the actual value. This makes
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Table 2: Percent of b,-K parameter space producing dif-
ferent indirect effects between prey

Indirect bC Ic
interaction* b, =.7 b,=.9 b =.7 b =9
(0, 0) 58.0 3 15.5 3
(+, +) 1.0 .8
(=, —) 35.8 15.0 8.7 65.8
(0, —) 5.6 22 5.0
(=, 0) 6.2 48.3

(0, +)

(+, 0) 253
(+, =) 78.1 27.8
(-, +) 3

* The first sign gives the effect of adding prey 2 on the density
of prey 1; the second sign gives the effect of adding prey 1 on the
density of prey 2. The standard parameter set was assumed, and a
<1% difference resulted in a zero effect.

diet choice a dynamic variable but assumes no role for
the fitness gradient in determining the rate of change.
Because information gathering is time-consuming, one
would expect that estimates of the prey density should lag
behind the actual density. The model simply assumes that
E,, the estimate of N,, changes at a rate proportional to
the difference between N, and E,. In other words,

dE

7; = y(N, — E)), (7a)
__n

1= T (7b)

where 7 is given by equation (5). The dynamics of this
model are quite similar to those of the instantaneous
model provided that the rate constant » is sufficiently large.
We examined how much of a lag (i.e., how small a value
of ») is required for the dynamics to depart significantly
from the dynamics predicted by the instantaneous model.
Figure 6 illustrates the change in dynamics as the rate
parameter v is varied, assuming our standard parameter
set with K = 1 and b, = 2.5. Significant differences be-
tween the population dynamics in the instantaneous and
lagged models in this example begin to appear when v is
on the order of 1. The value » = 0.5 (top panels of fig.
6) produces population dynamics that differ markedly
from those of the IC model, which produces dynamics
that are almost indistinguishable from those in the bottom
panels (fig. 6) when » = 50. When » = 2 (second pair of
panels), there is little lag between the switch in the optimal
q (from 1 to 0 or 0 to 1) and the switch in the actual
value of g. When v = 10, the lag is invisible on the graph,
but the pattern of fluctuation in g still differs significantly
from the pattern observed when v = 50 (or with the IC

model). Values of v on the order of 10 or more yield
distributions of dynamics over the standard parameter
space that are very similar to figure 1D (i.e., similar to the
IC model).

The second alternative dynamic framework investigated
here assumes that an individual can instantaneously
change from q¢ = 0 to g = 1, and the rate of these tran-
sitions depends on the change in fitness produced. How-
ever, unlike the previous models, individuals in the pop-
ulation do not all have nearly identical trait values. There
are two predator phenotypes, the specialist with popula-
tion size P, and the generalist with population P,, and each
phenotype can switch to the other when it is adaptive to
do so, yielding

dR_ ( bie,N, _ )
dt — \1+ kN,

b,¢,N, + b,c,N, b,c,N,
— MPjexp |y -
1+ hi¢,N, + h,e,N, 1+ hN,
+ MPexp |- b,c,N, + b,c,N, N b,c,N, ’
8 1+ he,N, + hye,N, 1+ hiN,
ﬁ _ P( bie,N, + b, N, ) ®
dt !\1 + h,c,N, + h,c,N,

— MPBEjexp|v

bie,N, + bye,N, beN, )”
- +

1+ hi,N, + h,e,N, 1+ hi¢,N,
+ MP{expli beN, +be,N,  beN, .
1+ hi,N, + h,e,N, 1+ hi¢N,

This has the same functions describing transitions between
types as a recent model of switching between habitats
(Abrams 2000b). The exponential terms result in transi-
tions between the two phenotypes, whose rates increase
with an increasing fitness gain from making the transition.
The model assumes that each behavioral type produces
offspring that initially have its own behavioral phenotype.
The parameter M is the per capita rate of switching from
specialist to generalist (or vice versa) when the food intake
rates of the two strategies are equal. The parameter » ad-
justs the sensitivity of the switching rate to the difference
in rewards; a large » means that even a small difference
in food intake rates will be sufficient to increase the rate
of switching greatly over the baseline rate given by M. No
cost of switching is included in the model. Results cor-
responding to the parameter space in figure 1 are shown
in figure 7. Some areas of chaotic dynamics are observed,
but chaos is less common than in the monomorphic model
illustrated in figure 1. However, when b, = 0.9, complex
cycles occur over a wider range of parameter space than
in the comparable model shown in figure 1B, and the zone
of stable equilibria at high values of b, is not present in
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A) DC model; b, = 0.7 B) DC model; b, =0.9
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C) IC model; b, = 0.7 D) IC model; b; =0.9
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Figure 4: Regions of b,-K parameter space with different forms of indirect interactions between the two prey species under the standard parameter
set for DC and IC models. A >5% difference in average density of one prey following addition of the other prey species constituted a significant
interaction. The shadings have the following meanings: black, (0,0); dark gray, (—, —); medium gray, (—,0) or (0, —); light gray, (+,0) or
(0, +); white, (+, —) or (—, +).

figure 7B. The case of b, = 0.7 can produce complex cycles tractors (in the case of b, = 0.7) and complex dynamics
(at low b,), unlike the monomorphic model. Although (in the case of b, = 0.9) are similar for these two quite
these details differ from the monomorphic model based different models.

on equation (4), the general locations of alternative at- Combining this quick survey of two alternative dynamic
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models of behavior with our original DC model shows
that there are some circumstances when the IC model can
provide a good approximation to dynamic models. How-
ever, the lag inherent in all dynamic models of behavior
can produce more complicated dynamics than predicted
by the IC model for at least some ranges of parameters
in all of the models we have examined. In addition, there
are significant differences between the dynamics of all three
classes of dynamic model examined here: those based on
equations (4), (7), and (8).

Discussion

The differences between instantaneous and dynamic be-
havioral models documented here suggest that instanta-
neous models should not be relied upon to accurately
predict the impact of adaptive behavior on population
dynamics. This message is certain to apply to many other
situations involving behavioral choice beyond the simple
two-prey systems considered here and in Abrams (1999).
Bernstein et al. (1988, 1991) also argue that behavioral
dynamics can affect population dynamics, using a simu-
lation model of patch choice by predators. However, the
present results also suggest that there are behavioral mech-
anisms and/or parameter ranges where an instantaneous
approximation may be quite accurate and that different
plausible dynamic models often make different predic-
tions. Thus, we clearly need to find out more about the
actual dynamics of adaptive behavioral decisions within
populations. Do individual predators pass through a phase
with intermediate preferences when the density of better
prey is changed through the threshold value for the in-
clusion of poorer prey? How much does preference vary
between individuals in a population experiencing the same
prey densities? How much is sampling behavior reduced
when a particular strategy (here specialization or gener-
alization) has been adaptive for a long time? What is the
relationship between the fitness gradient and the rate of
change of behavior? (Is it linear, as assumed here, or does
it have a more complex form?) Answers to these sorts of
questions could narrow (or perhaps expand) the range of
biologically plausible models of behavioral dynamics. It

Figure 5: The dynamics of the DC model given the standard parameter
set but with n = 1, that is, less slowing of the rate of change in g as g
approaches its limiting values of 0 or 1 than in figure 1. A is the attractor
for b, = 0.7. B and C show the alternative attractors for the case of
b, = 0.9 because there are several qualitatively different pairs of attractors
over the parameter space where alternatives exist. An additional function
is added to prevent the value of g from exceeding its biological bounds
(¢ = 107°). The color coding of the dynamics is identical to that used
in figure 1.
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Figure 6: Four examples of the dynamics of the model with a delayed estimate of the density of the better prey; equations (1) combined with
equations (7). The left-hand panels show the prey populations over time, with the lower line denoting the more rewarding prey (species 1). The
right-hand panels show both the value of g in the model (solid line) and the optimal q (dashed line) at every instant in time. The parameter values
arer; = 1, K; = 1, m; = 0.005, b, = 2.5, b, = 0.9, h; = 2, ¢; = 5, d = 0.4. Adaptive rates larger than » = 50 produce population and trait dynamics
indistinguishable from those for » = 50.
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Ab;=0.7
6

by

Figure 7: Dynamics produced by the dimorphic model (eqq. [8]). The
population dynamic parameters are identical to those in figure 1, with
results for b, = 0.7 and b, = 0.9. The switching between types is de-
scribed by the parameters M = 0.005 and » = 20. The color coding for
different types of dynamics is identical to that used in figures 1 and 5.

has long been known that foraging behaviors do not re-
spond instantaneously to changes in food conditions (Tin-
bergen 1960; review in Krebs and Inman 1994). Never-
theless, we do not have the types of empirical information
that would be required to describe the time course of

changes in behavior, given different sorts of temporal
changes in food abundance.

The present work also highlights the lack of theory re-
garding the interaction of population dynamics and be-
havioral dynamics. We have only considered the effects of
behavioral dynamics on the final population dynamics in
an otherwise constant environment. Models in which be-
havior shifts because of altered environmental conditions
and analyses of the effects of behavioral dynamics on tran-
sient population dynamics are needed. There are also many
ecological scenarios involving adaptive behavioral shifts for
which there are no investigations of the impact of behav-
ioral flexibility, even in the case of instantaneous shifts.
The consequences of dynamic behaviors need to be ex-
plored in simple extensions of the present model, such as
one in which prey species compete for resources. One
would expect that rules governing behavioral dynamics
would be especially likely to affect system behavior in
larger food webs in which two or more species simulta-
neously attempt to adapt to each other’s behaviors and
population densities. The few previous analyses of such
scenarios (e.g., Abrams 1992; Abrams and Matsuda 1993)
have assumed (or adopted behavioral rules that ensure)
that behaviors reach an equilibrium with respect to each
other and with respect to population densities. It is un-
likely that this will always occur in natural systems. The
growing recognition that effectively instantaneous behav-
ioral change can have a large impact on population dy-
namics (Abrams 1982, 1984, 1995; Fryxell and Lundberg
1998; Lima 1998; Houston and McNamara 1999; Peacor
and Werner 2001; Bolker et al. 2003) argues for a similar
recognition that the dynamic rules by which behaviors
change are also critical in understanding ecological com-
munities. The scarcity of theory dealing with behavioral
dynamics in a community ecological context contrasts with
a relative abundance of theory on the population dynam-
ical implications of different rates and forms for the evo-
lutionary dynamics of traits in ecological communities
(e.g., Abrams et al. 1993; Van der Laan and Hogeweg 1995;
see reviews in Abrams 20004, 2001).

Earlier work based on IC models (Fryxell and Lundberg
1994; Van Baalen et al. 2001) had suggested that a predator
with adaptive diet choice was likely to create more stable
dynamics than a generalist predator. However, neither of
those studies included immigration of the prey. Our results
show that the IC model is more likely to exhibit sustained
cycles than is the standard DC model (eq. [4]) when prey
immigration is high and b, > dh,. Under these conditions,
the standard DC model predicts that the predator becomes
a complete generalist, which cannot occur under the IC
model. Thus, contrary to earlier suggestions by Fryxell and
Lundberg (1994) and van Baalen et al. (2001), systems
with diet choice can be less stable than those with inflexible



generalist predators. This result serves as a warning against
overgeneralization regarding the stabilizing or destabiliz-
ing effects of diet choice. Clearly, much more information
on the actual forms of population growth functions and
behavioral dynamics is needed before the stability question
can be addressed adequately.
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