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This work details theory in which selection favors generalists in a more variable environment. Specifically, in a
two-host-one-parasitoid model, temporal variation in host abundances alters the optimal searching strategy and
leads to the evolution of more generalist parasitoid strategies. Consistent with empirical observations, parasitoids
learn host/plant odors, and use them as a cue to search for oviposition sites. The amount of unsuccessful search
time required before a parasitoid alters its searching cues (the “giving-up time”) is modeled in order to
understand the evolutionarily optimal giving-up times under a variety of conditions. When host abundances
vary across time, a generalist parasitoid strategy evolves with short giving-up times as it is likely that the host
initially favored by a parasitoid will now have a low abundance. In contrast, when populations reach stable
dynamics across time, giving-up times typically evolve to longer times, i.e. parasitoids remain specialized longer.
The effect of temporal fluctuations is consistent across variation caused by endogenous population interactions
and, to some degree, by environmental stochasticity. The conclusions are robust in that there is a strong degree
of concordance between the results of a stochastic, individual-based model and a deterministic, numerical
model. As an extension, spatial variation in hosts that leads to unequal tradeoffs between generalist parasitoids

and specialist parasitoids may also result in the evolution of reduced giving-up times.

Optimality models predict the evolutionary equilibrium
of a trait given a set of ecological conditions. Analysis of
optimality models commonly involves restricting para-
meters to situations in which a stable equilibrium exists.
Only a few studies (e.g. Abrams 1997, Nuismer and
Doebeli 2004) have examined the consequences of
unstable dynamics for the evolution of traits. Here
I examine the importance of temporal variation in
population sizes on the evolution of a parasitoid
foraging trait in order to address the following ques-
tions. Is the effect of population cycles on interspecific
interactions similar across all ecological parameters?
Can both positive and negative indirect interactions
occur in stable systems, or are there some interactions
that can only be observed in the presence of temporal
variation? Can both endogenous population cycles and
exogenous environmental variation lead to a similar
evolutionary response in the trait? These broad ecolo-
gical questions are addressed in the context of a specific
ecological system in which two host populations are
attacked by a single parasitoid population.
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The trait of interest is a behavioral rule used by
parasitoids to make decisions when searching for hosts.
Learning environmental cues associated with the pre-
sence of suitable hosts is an important part of the
strategy used by parasitoids to search for hosts on which
to lay eggs. Parasitoids can learn both host and plant
odors as a means of locating hosts (Turlings et al.
1993). The earliest learning can take place upon
emergence from a host when the parasitoid experiences
plant and host fecal chemicals and develops a natal
host preference based on these early experiences (Kester
and Barbosa 1991). Natal host preference can be
reinforced by positive oviposition experience (Vet and
Groenewold 1990). Importantly, there is also evidence
that parasitoids forget odor cues. In the above labora-
tory experiments, parasitoids forget foraging cues when
they fail to find a host after a certain amount of time
using that cue. This contrasts with previous work that
has modeled learning as a fixed preference throughout
the season (Hastings and Godfray 1999). There appears
to be a sensitive learning period early in the lifespan of



the adult parasitoid (Shechan and Shelton 1989, Vet
and Groenewold 1990, Kester and Barbosa 1991);
however, most parasitoids continue to modify foraging
cues later in life (Kerguelen and Carde 1997).

The giving-up time (GUT) models traditionally
used to model patch selection (Van Alphen and Galis
1983) can be used to model the use of odor cues by
parasitoids because searching for hosts is analogous to
searching for food. Instead of decisions about departing
from patches, parasitoids make decisions about giving-
up on the use of a species-specific searching cue to find
a host. This represents a simple model of learning that
is consistent with many empirical studies of parasitoid
foraging (Sheehan and Shelton 1989, Papaj and Vet
1990, Kester and Barbosa 1991, Grasswitz and Paine
1993a, 1993b).

Although the optimal search strategy for patchy
resources is often not precisely described by a GUT
model (Green 1984), previous theory based on patch
selection has found that a GUT strategy can be nearly
optimal depending on the resource distribution (Waage
1979, Iwasa et al. 1981, McNair 1982, Green 1984,
Driessen et al. 1995). Presumably, GUT models are
only caricatures of the actual mechanisms used by
parasitoids. Nevertheless, it is important to understand
how evolution acts in such models because they
approximate a mechanism that can be easily imple-
mented, which may not be the case for the strict
optimal strategy.

The optimal GUTs were determined using two
approaches: (1) a deterministic model based on the
expected values from a stochastic encounter process;
and (2) an individual-based model with stochastic host-
parasitoid encounters. For model parameters that lead
to relatively stable population dynamics, the giving-up
time of the parasitoids evolves to moderate or long
times. The presence of population cycles, generated by
feedback loops in the population dynamics, or by
environmental variation, leads to shorter giving-up
times.

Model

The model includes two host populations, H, and Hg,
and a shared parasitoid, P. Each host population utilizes
different resources and could be distinguished by
parasitoids using cues from the host, the plant, or
the host-plant complex. When parasitoids search for
oviposition sites, they adopt either a specialist or a
generalist strategy. In real systems, searching strategies
are probably characterized by a continuous variable
with parasitoids utilizing a Bayesian decision process
that accounts for multiple encounter events. A
simplified dichotomous approach is adopted here for
the purpose of creating a tractable model. When a

generalist parasitoid encounters a host, it learns host-
specific cues and switches to a specialist strategy.
Specialist parasitoids learn their first cues at emergence
and became specialists on their natal host (Kester and
Barbosa 1991). Specialist parasitoids P; have an attack
rate 2 on host i and an attack rate 0 on the other host. If
a parasitoid fails to encounter a host after giving-up
time g, then the parasitoid switches to a generalist
strategy with an attack rate z X a on both hosts, where z
(between 0 and 1) represents the reduction in attack
rate on a host as compared to the specialist attack rate.
There was an equitable tradeoff in attack rates such that
z=0.5 for most simulations examined here.

The current model differs from previous probabil-
istic models that assume giving-up time is very small
relative to the total length of the season (Iwasa et al.
1981). Here giving-up time is free to take on any value
and is explicitly measured relative to the length of the
season, i.e. the length of the available time that both the
hosts and parasitoids are alive and able to interact.

First, I develop a simplified analytical model in
which all parasitoids have an identical giving-up time
for host-specific searching. The analytical model illus-
trates within-season dynamics, but it has limitations.
Solutions of the analytical model require complex
numerical algorithms, and the model involves assump-
tions about genotype distribution and the strength of
selection. Therefore, I also develop an individual-based
model in which each parasitoid has a unique genotype
for giving-up time. The individual-based model relaxes
assumptions about genotype distribution and weak
selection made by the analytical model.

Analytical model

For the analytical model, parasitoids begin adult life as
specialists on their natal host. From time 0 to g, the
probability of an a-specialist parasitoid having no host
encounters is exp(—a Hy g), derived from

oo _ o o1, (1)
dt ’
where P, o are o-specialist parasitoids that have had no
host encounters and parasitoids encounter hosts at rate
a. An equivalent equation models the [-specialist
parasitoids. At time g, the number of specialist
parasitoids on host o drops instantaneously from P,
to P, (1 —exp(—a Hy g)) as those parasitoids that have
had no contact with a host switch to a generalist strategy
(Fig. 1). In this model, an encounter with either a
parasitized or non-parasitized host is sufficient for the
parasitoid to remain a specialist. This describes para-
sitoids that cannot discriminate between parasitized and
non-parasitized hosts, or parasitoids that, despite the
ability to discriminate, continue to use search cues after
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Fig. 1. Example of within-season parasitoid dynamics in
which the number of parasitoids that are specialized on P
drops at the giving-up time (g) and then increases as
parasitoids switch from a generalist strategy back to a specialist
strategy. The solid line is the expected specialist population
based on Eq. 2. The dashed line is a single run of the
individual-based model with an identical genotype g for all
parasitoids. (P, =1000, Pg o =700, H, =1000, Hg =2000,
a=0.0012, z=0.5, g =0.3)

encountering previously parasitized hosts. Parasitoids
may continue to use these cues either because of
opportunities for superparasitism (not modeled here)
or because previously parasitized hosts may indicate the
presence of non-parasitized hosts.

Following the initial giving-up time g, the number
of o-specialist parasitoids continues to change as a
function of time P, (t). Those specialist and generalist
parasitoids that encountered an a-host g time units ago
(in the square brackets of Eq. 2) and have not
encountered a host since that time, the fraction
exp( —aH,g), will switch to a generalist strategy.
Generalist parasitoids immediately switch back to, or
learn, a specialist strategy when they encounter a host
(positive term of Eq. 2),

dr
I * = —exp(—aH,g) |aH,P (t — g)
t

—zaH,(P —P,(t —g) — Pyt — g))

+zaH,,(P — P, (t) — P4(0) ()

An equivalent equation models the B-specialist para-
sitoids. The solution to this differential equation
consists of multiple segments, each g time units
long (Fig. 1). An analytical solution of Eq. 2 for
P,(t) and Pg(t) is sufficiendy complicated to be of
little use. Analytical insights are not evident even when
the multi-segment aspect of the solution is approxi-
mated as a smooth function after the first segment
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because the complexity that arises from dP,/dt being
dependent on both specialist densities Py (t) and Pg(t).
However, a solution can be found using numerical
methods.

Within-season foraging dynamics are modeled in
continuous time while across-season population dy-
namics are modeled in discrete time. For both the
deterministic and individual-based model, across-season
system dynamics follow a host-parasitoid model with

density-dependence (Beddington et al. 1975),

H,(t+1)=f H,(¢t) exp (ra (1 —H“—(t))>

ky
Hp(t+ 1) = fHp(0) exp <rB <1 — Hi(t)))
B
P(c+ 1) =1 —f,)H,(0 + (1 — f)Hy(0) (3)

with growth rate r; and carrying capacity k; for host i.
The fraction of the host population i that escapes attack
by a parasitoid is f; and is determined by encounters
between hosts and parasitoids. In the individual-based
simulation, f; varies due to the stochastic process of
encounters, so the deterministic model is used to
examine the dynamic stability of Eq. 3 in the absence
of individual variation and stochasticity.

The parameter g was allowed to evolve across
generations based on the assumptions of a quantitative
genetics model, which implicitly assumes weak selection
and a distribution of trait values that is narrow relative
to the width of the fitness function (Abrams et al.
1993). The fitness W(g, g) of an individual with a
giving-up time g in a population with a mean giving-up
time of g equals the expected number of non-
parasitized hosts attacked by that individual over the
course of the season. This is a function of the mean per
capita attack rate on each host with a giving-up time g
and the number of non-parasitized hosts of type i in a
population of parasitoids that have a mean giving up
time ga Hi,O(gat)-

Jvl aP,(g,t) + za(P — P (g,0) — PB(g, t))H
0 P

u,O(g’ t)

+aPB(g, t) + za(P — Py(g, 1) — Py(g, 0)
P

Hj (g, Dde

4)
This assumes that the parasitoid that emerges from a
host is a progeny of the first parasitoid to attack a host.
The change in the g between generations is related to
the genetic variance, V, and the fitness gradient which
was calculated numerically with Ag*=10"".

gr-%—l = gt + VAW(g*7 gt)




The equation that describes the evolution of g involves
additional numerical integration, and the solution
becomes so computationally intensive that it is equally
efficient to simulate the system using an individual-
based model (IBM). It is more difficult to characterize
population dynamics in the individual-based simula-
tion; however, the individual-based model can more
easily include relevant biology such as a wider range of
genotypes in the population, and it automatically
incorporates the demographic stochasticity inherent in
parasitoid-host encounters in a finite population. Both
the IBM and the deterministic, numerical model were
analyzed and compared in order to understand the
evolutionarily optimal giving-up times under a variety
of conditions.

Individual-based model

The individual-based model simulates stochastic en-
counters between individual hosts and parasitoids, and
genes are individually tracked. Parasitoids make indivi-
dual searching decisions based on their experiences and
pass on the genes associated with their behavioral
decisions. The giving-up time is coded by a string of
100 additve “binary” loci in a diploid genome
resulting in a normalized phenotype g between 0 and
1. Mating is panmictic; mutation and recombination
takes place as eggs are laid. Mutation was simulated by
randomly switching the value of the gene at each of the
100 loci with a probability of 0.00008 per locus. This
probability was chosen because it resulted in simula-
tions for which mutation did not swamp out selection,
yet some variation was maintained, and the value is
within the range of realistic values (Griffiths et al.
1996). Host-parasitoid encounters and parasitoid
switching behavior are simulated in continuous time
by stochastically simulating the time until the next
discrete event (Gillespie 1976). The individual-based
model was written in C+4-, using the Mersenne twister
random generator (http://www.agner.org/random). Re-
sults were compared to a separate IBM written in
Mathematica 5.0 and to numerical solutions of Eq. 2 in
order to check for coding and mathematical errors.

Simulations were run for 5000 generations with
mean population sizes and variance in population sizes
calculated over the last 3000 generations. Parameters
were varied both systematically and randomly to
explore the range of model dynamics. Stable parameter
space was examined by systematically changing a single
host parameter, either the growth rate, rp, or the
carrying capacity, kg. For each parameter set, simula-
tions were repeated three times in order to examine
variation among individual stochastic runs. Given that
the unit of k is individuals per area, the IBM was run
with an area of 2000.

Analysis
Stable parameter space

At low attack rates, a, and low host growth rates, r, the
deterministic model is stable due to host density-
dependence. Even for these parameters, the indivi-
dual-based model will have temporal variation in
population sizes because of the stochastic process of
host-parasitoid encounters. Temporal variance in the
IBM is predicted to follow a beta binomial distribution,
i.e. elevated variance as compared to a binomial
distribution. Based on preliminary inspections, para-
meters that lead to variance ratios (observed: predicted
based on binomial) less than 12 in the IBM will be
considered stable, because in the absence of stochastic
encounters, population sizes would reach a stable
equilibrium in most such systems.

For stable parameters, the evolution of g can be
explained by understanding the selective pressures on
each parasitoid sub-population. An ideal parasitoid
would focus solely on the most abundant host, foraging
broadly when abundances are equal (Stephens and
Krebs 1986). For parasitoids emerging from the
abundant host an approximation to this ideal strategy
can be accomplished within the constraints of the GUT
model, whereas parasitoids emerging from the less
abundant host would benefit by immediately foraging
broadly. However, parasitoids from the abundant host
drive the evolution of g because of their larger numbers.
The equilibrium giving-up time g can be explained by
understanding the evolutionary pressure on parasitoids
emerging from the dominant host and by examining
the difference between the host densities and the total
host density.

For parameters leading to a stable equilibrium, an
increase in a growth parameter of a host (such as r, or
kg) decreases the equilibrium g. Intuitively, one may
expect the evolution of large values of g when an
increase in a growth parameter leads to a large
difference between host densities, but that is not the
case. Sufficiently large increases in the growth para-
meter result in g asymptotically approaching a mini-
mum value (Fig. 2a for kg up to 1.9). The inidal
decrease in the equilibrium g with an increase in a
growth parameter of a host is due to an equalization of
equilibrium host abundances as the growth rate of the
least abundant host population increases (Fig. 2b). At
equilibrium, the abundances of non-parasitized indivi-
duals of the two host populations reverse relative rank
within a season. As the host densities become more
similar at the beginning of the season, they cross over in
rank abundance earlier in the season. Equilibrium
giving-up time decreases because the most abundant
parasitoids that are emerging from the most abundant
hosts should become generalists sooner. However, there
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Fig. 2. Change in mean genotype with change in the carrying
capacity of host B. In this case, population densities cycles
when kg >1.9. (a) The solid line is the equilibrium giving-up
time for the deterministic model. Each circle represents a run
of the individual-based model. Three simulations are plotted
for each value of kg. (b) The mean density of each host
population from the deterministic model. The long-dashed
line represents H, the short-dashed line represent Hg. (a =2,
rp,=11,13=15, ky =1, z=0.5).

is no increase in the giving-up time with increases in the
growth parameter of the abundant host despite an
increasing difference between host densities (Fig. 2b).
This is because larger host densities lead to larger
parasitoid densities and these in turn cause a faster
decline of non-parasitized hosts within a season. The
faster decline leads to an earlier crossover in host-
abundances than one would expect based on the same
host ratio at smaller host densities. However, giving-up
times below ~0.4 were never found for parameter
space that produced stable equilibria. At equilibrium,
the parasitoid abundances always correspond to host
abundances in such a way that a crossover in host
abundances never occurs early within the season.

The above analysis assumes each host has the same
attack rate. Increasing the attack rate on the numerically
dominant host (while maintaining the same average
attack for both hosts) results in the evolution of
relatively reduced giving-up times. The larger attack
rate on the numerically dominant host leads to a
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reduction in the host density and an increase in the
density of the dominant parasitoid. The increased
density of parasitoids emerging from the dominant
host and the increased attack rate on the dominant host
more quickly depletes the dominant host within a
season, and shorter giving-up times evolve. For example
given the parameters in Fig. 2, at kg =1.3, the giving-
up times evolved to 0.49 with attack rates of 1.4 and
2.6 on H, and Hg respectively as compared to 0.60
when both attack rates were 2.0.

A few realistic biological assumptions can be
included in the IBM which are not included in the
deterministic model. 1) Accounting for drift and
mutation results in different evolutionary outcomes
when selection becomes weak. Mutations in this model
push the giving-up time genotype toward 0.5 because
allelic values are constrained to be 0 or 1, resulting in a
mutational bias. As a consequence of the mutation-
selection balance, the actual mean genotypes in the
individual-based model are closer to 0.5 than that
predicted by the deterministic model (Fig. 2a). 2)
Parasitoids that can make foraging decisions based on
the parasitism state of the host do not substantially alter
the dynamics and mean g as compared to those
presented in Fig. 2.

Unstable parameter space

For many parameter values the equilibrium is unstable.
The parasitoid population and host populations cycle
deterministically when the attack rate, a, is sufficiently
large and the amplitude of the cycles increases as the
attack rate increases (Kaitala et al. 1999). Large
amplitude cycles lead to the evolution of shorter
giving-up times. This is illustrated in Fig. 2 by the
reduction in giving-up time when kg >1.9, a parameter
range for which population cycles persist. The pattern
observed when exploring single parameters system-
atically is supported by analysis in which all parameters
where chosen randomly. Combinations of random
parameter values from the ranges a€(4,1), r, €(3.5,1),
r3€(3.5,1), ky€(3,0), and kg €(3,0) were chosen 500
times. A mean g>0.4 was never observed for stable
cases and often observed for systems characterized by
cycles (defined by a high variance ratio).

Deterministic population cycles can change the rank
order of host population sizes among generations. The
host with the larger population size often crashes before
the host with the smaller population size, especially
when host demographic parameters differ. At these
times, a large population of parasitoids that emerged
from a previously numerous host are in a generation
with few natal hosts, but many non-natal hosts. These
generations drive selection for shorter giving-up times.
As a consequence, population cycles that are driven by a



high host-parasitoid encounter rate result in the evolu-
tion of shorter giving-up times because the host-crash
across generations increases the selection pressure for
parasitoids to forage more broadly.

Environmental variation can lower the giving-up
time in a manner similar to deterministic, endogenous
cycles. In order to examine the ability of environmental
variation to generate population cycles that affect the
evolution of g, the values of demographic parameters
were modeled as dependent on an environmental
variable drawn from a random distribution. Simula-
tions were conducted in which the growth rates, r, for
each host species were randomly chosen each genera-
tion. Results show that environmental variation leads to
the evolution of lower giving-up times (Fig. 3). If host
growth rates were negatively correlated between hosts,
then giving-up times evolved to lower levels than if host
growth rates were positively correlated. However,
environmental variation did not reduce giving-up times
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Fig. 3. (a) Response of giving-up time to increasing environ-
mental variation. Growth rates are varied within a range for
which the system is stable at fixed growth rate values. Growth
rates for o-hosts and PB-hosts are randomly drawn from a
uniform distribution equal to 1.8 +the range of environ-
mental variation. (b) Variance rate, which is defined as the
actual temporal variance of the parasitoid population divided
by the variance expected if host-parasitoid encounters were
determined by a pure binomial process. (a =2.23, mean
1, =1.8, mean rg =1.8, k, =1.23, kg =1.23, z=0.5)

to as low a value as found in some systems with
endogenously driven cycles. The limited effect of
environmental variation may be partially due to the
restricted values over which parameters could vary. To
ensure that fluctuations in population sizes were due to
exogenous processes, the range of the demographic
parameter was restricted to values for which the
population dynamics would be stable.

Alternative tradeoffs in attack rates

The above analysis was restricted to z=0.5 in order to
understand the importance of temporal variation.
However, the value of z is a major determinant of the
evolution of giving-up times. When z =0.5, there is a
perfectly additive tradeoff such that the generalist and
specialist strategies have the same search effort per host.
This describes a situation in which searching for one
host type precludes encounters with the other host type,
for example if the two host populations occur in two
separate patches and travel time between the patches is
trivial. When z <0.5, a generalist parasitoid is less
efficient than a specialist (Fig. 4a). Parasitoid host
location has traditionally been thought of as a hierarchy
of cues from general habitat location, to microhabitat
location, to individual host location (Godfray 1994). If
generalist parasitoids abandon more specific cues in the
hierarchy and rely on less specific cues, then generalist
parasitoids may be less efficient overall (Steidle et al.
2001). Conversely, a generalist parasitoid could be
more efficient if the hosts” habitats are interspersed and
a generalist parasitoid spends less time passing over
non-target habitat than a specialist parasitoid.

Changes in z can have an effect as large as or larger
than that of the amplitude of cycling. At the extreme z-
values of 0 and 1, the optimal parasitoid strategy is a
giving-up time of 1 and O respectively. In the
individual-based model, the mean g can evolve during
stable dynamics to nearly the full range of all potential
values along a gradient of z. The mean g is only
prevented from reaching the extremes by mutation

pressure (Fig. 4b).

Discussion

Given the assumption of an additive trade-off in attack
rates (z=0.5), the part of parameter space where
between-season population dynamics are stable is
characterized by the relative rank abundance of non-
parasitized hosts of the two types crossing over relatively
late in the season. As a result, giving-up times evolve to
values greater than 0.4. Lower giving-up times evolve in
two situations: 1) generalist parasitoids have only a
minor reduction in searching efficiency on each species
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Fig. 4. The tradeoff in search rate for generalist and specialist
strategy. (a) The two closed circles are the possible combined
search rates for a specialist on host species 1 or 2. The open
circles are the combined search rates for a generalist.
Each line represents a different value of z. For values of
z>0.5, generalists are more efficient than specialists. For
values of z <0.5, generalists are less efficient than specialists.
(b) Evolutionary response of giving-up time to changes in
the generalist/specialist tradeoff. The solid line is the
equilibrium giving-up time for the deterministic model.
Each circle represents a run of the individual-based model.
Three simulations are plotted for each value of z. (a=1.16,
oy =2.46, g = 1.06, k, =2.23, kB =0.88).

compared with specialist parasitoids (z close to 1), or 2)
populations cycle. This model makes the prediction
that parasitoids with short giving-up times are likely to
be found in temporally variable populations. Conver-
sely, specialist parasitoids should more likely evolve in
temporally stable populations.

In the presence of endogenously-generated, determi-
nistic cycles, g can evolve to values less than 0.4.
Environmental variation affecting host demographic

parameters can also lead to the evolution of reduced
giving-up times. The reduction of giving-up times is
greater if hosts are affected independently or oppositely
by the variable environment. This may be an important
mechanism reducing giving-up times given that envir-
onmental variation is ubiquitous.

While the empirical literature does not contain
enough studies for a thorough comparison of the model
results to nature, qualitative differences between em-
pirical results and the model predictions for stable
parameters are suggestive. In general, laboratory-based
empirical studies have found lower values of g than
predicted by the model. The giving-up times related to
odor foraging cues in the literature are near 0.5 or
smaller (Table 1). The giving-up time of Cotesia
congregata to wild cherry learned at emergence was
6—7 days in a parasitoid with a lifespan of approxi-
mately two weeks (Kester and Barbosa 1991). While
not specifically examining giving-up time, a study of
Lepropilina heterotoma preference for apple-yeast or
mushroom, habitats for its Drosophila host, found that
the learned preference persisted for less than 4 days, in
parasitoids with a lifespan of approximately 11 days
(Papaj and Vet 1990). Thus, the limited empirical
results are clustered at the bottom of the range of values
that the model predicts for stable systems. The presence
of endogenous cycling or certain kinds of environmen-
tal stochasticity in nature might account for this
discrepancy. Within-season temporal variation of host
availability has been documented for some of the
species in Table 1, but across-season population
dynamics remain largely undocumented (Bosque-Pérez
et al. 2002, Gonzales et al. 2002). Clearly other factors
could be involved; the most important of these is z,
which quantifies the tradeoff in searching rates between
generalists and specialist.

A few alternative model formulations have been
examined which are mentioned here briefly because of
their potential biological relevance and because they
illustrate the robust nature of the general conclusions.
First, the model presented here makes the simplifying
assumption that generalist parasitoids adopt a specialist
strategy once they encounter a host. An alternative
model was examined in which generalist parasitoids
remain generalists for the duration of the season; giving-
up times typically evolve to even longer times (>0.5),
but population variation can still dramatically reduce

Table 1. Giving-up times empirically measured in parasitoid species.

Giving-up time (days) Lifespan (days) g
Cotesia congregata (Kester and Barbosa 1991) 7 14 0.5
Leptopilina heterotoma (Papaj and Vet 1990) 4 11 0.4
Lysiphlebus testaceipes (Grasswitz and Paine 1993a) 1 3 0.3
Diaeretiella rapae (Sheehan and Shelton 1989) 2 6 0.3
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giving-up times. Second, this model assumes parasitized
hosts contribute to density-dependent host regulation
(Eq. 3), which is reasonable if parasitism takes place late
in the host life cycle or parasitized hosts continue to
consume resources. May et al. (1981) argue that the
manner in which density dependence is included in the
classical model analyzed here (Beddington et al. 1975)
represents the minority of real systems, and that other
assumptions alter the stability properties of the model.
However, limited analysis of a model in which
parasitized hosts do not contribute to host density-
dependence suggests the general conclusion remains,
that cycles reduce the giving-up time.

The model presented here could be further expanded
in a number of ways. First, alternative mechanisms for
searching or learning may need to be included in order
to describe the evolution of giving-up times in para-
sitoids. Although this model was inspired by experi-
mental studies on the duration of learned foraging
odors, the decision-making process of parasitoids may
be far more complex, involving a constant tracking and
calculation of foraging quality and quantity. For
example, dynamic optimization models have been
used to successfully model the foraging decisions of
the parasitoid Trichogramma thalense on variable
quality moths (Keasar et al. 2001) and less successfully
to model the evolution of traits in Encarsia formosa
(Burger et al. 2004). In addition, parasitoid survival
may differ between the host populations. Here I
assumed 1 parasitoid was produced from each attacked
host, but parasitoid survival can vary between host
populations depending on the host (Brodeur et al.
1998) or perhaps the plant on which the host feeds
(Salvo and Valladares 2002).

In this model, odor or cue production by plants and
hosts is implicitly assumed to be fixed, but induced
signals in the plant or even coevolution between
induced signals and parasitoid response may be im-
portant in understanding natural systems. Learned
odors are modeled here as a passive association with
the plant-host complex. In contrast, research has
demonstrated a link between herbivore induced volatile
organic compounds and predator behavior (Kessler and
Baldwin 2001). It would be interesting to extend the
work presented here to include plant behavior such as
induced defenses (1997). Plant behavior and parasitoid
behavior may interact in non-intuitive ways. Previous
work has demonstrated the sensitivity of the effect of
the parasitoid on the specificity of plant info-chemicals
in a multi-host system (Vos et al. 2001).

In this study, temporal variation in host populations
can have a large effect on the evolution of traits in
parasitoids that determine how they search for hosts on
which to lay eggs. Low giving-up times are only
reachable either in the presence of population cycles
or in the presence of non-equal tradeoffs among

parasitoid generalists and specialists. While the empiri-
cal literature is not extensive enough to distinguish
between the possible scenarios described here, the
results suggest that one or both of these mechanisms
may be important in understanding the evolution of
parasitoid giving-up times for cues used to find hosts.
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